CS-465 Computer Vision

Nazar Khan

PUCIT

11. Camera Geometry

- A camera projects $3 D$ world points to $2 D$ pixel coordinates.
- In projective space, it is a mapping from \mathbb{P}^{3} to \mathbb{P}^{2}.
- The whole process of going from $3 D$ world coordinates X to 2D image pixel coordinates x can be encoded in a 3×4 camera projection matrix P

$$
x=P X
$$

where x is the $2 D$ pixel location of the $3 D$ world point X when projected by camera P.

Pinhole Camera

Figure: Pinhole camera with light passing through tiny aperture. Source: Wikipedia

Pinhole Camera Model

Pinhole camera model. Author: M. Mainberger (2010).

Virtual Image Plane

Pinhole camera model with virtual image plane in front of the focal plane. Author: M. Mainberger (2010).

Camera Projection Equations

World Coordinates to Camera Coordinates

Figure: Any 3D location M has different representations in different coordinate systems. The camera center C itself is a 3D location represented in a world coordinate system. Author: N. Khan (2018)

Extrinsic

Intrinsic

The intrinsic camera parameters describe the transition from the ideal image coordinates $(x, y)^{\top}$ to the real (pixel) coordinates $(u, v)^{\top}$. Author: M. Mainberger (2010).

Camera Matrix

- A 3D point in homogeneous world coordinates $\left(X_{w}, Y_{w}, Z_{w}, 1\right)^{T}$ is mapped to a 2D image point with homogeneous pixel coordinates $(u, v, w)^{T}$ as

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
h_{u} & -h_{u} \cot \theta & u_{0} \\
0 & h_{v} / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right)}_{\text {intrinsic }} \underbrace{\left(\begin{array}{cccc}
f_{x} & 0 & 0 & 0 \\
0 & f_{y} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)}_{\text {projection }} \underbrace{\left(\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3} \\
0 & 0 & 0 & 1
\end{array}\right)}_{\text {extrinsic }}\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right)
$$

$$
=\underbrace{\left(\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right)}_{\text {full projection matrix }}\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right)
$$

- 12 parameters in total but with 1 free scaling parameter. So 11 degrees of freedom: 6 extrinsic plus 5 intrinsic.

Anatomy of P

To be completed ...

