CS-565 Computer Vision

Nazar Khan

PUCIT

12. Camera Calibration

Factorization of the Camera Matrix

- Let K be the 3×3 product of the intrinsic and projection matrices after ignoring the last column of zeros.
- Extrinsic matrix performs a 3×3 rotation R followed by 3×1 translation t .
- We can represent these operations as $[R \mid \mathbf{t}]$. So $[R \mid \mathbf{t}] M=R M+\mathbf{t}$.
- Then $P=K[R \mid t]$.
- Camera center C is the null-vector of P.

$$
P C=0 \Longrightarrow K[R \mid \mathrm{t}] C=0 \Longrightarrow K R C+K \mathrm{t}=0 \Longrightarrow C=-R^{T} \mathrm{t}
$$

Camera Calibration Using 2D Checkerboard

- Camera calibration is the process of finding the 12 values of P.
- We can use a checkerboard of known size and structure.
- Fix one corner as origin of world coordinate system.
- Then all points on the checkerboard lie in the $X Y$-plane $(Z=0)$.
- Z-axis is orthogonal to the checkerboard.

Camera Calibration Using 2D Checkerboard

- For any point $\tilde{\mathrm{M}}$ on the checkerboard, its image $\tilde{\mathbf{m}}$ is obtained as

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{ll}
K & 0_{3 \times 1}
\end{array}\right)\left(\begin{array}{cc}
R & \mathbf{t} \\
0_{1 \times 3} & 1
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z=0 \\
1
\end{array}\right)=\underbrace{K\left(\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right)}_{\text {Homography } H}\left(\begin{array}{c}
X \\
Y \\
1
\end{array}\right)
$$

- That is $\tilde{\mathbf{m}}_{i}=H \tilde{\mathrm{M}}_{i}$.
- Homography for checkerboard image j can be computed via DLT using at least 4 correspondences $\tilde{\mathrm{m}}_{i} \longleftrightarrow \tilde{\mathrm{M}}_{i}$.

Camera Calibration Using 2D Checkerboard

- The \mathbf{m}_{i} can be found using corner detection.

- The corresponding \mathbf{M}_{i} can be computed since the size and structure of the checkerboard are known (squares of measured dimensions).

Camera Calibration Using 2D Checkerboard

- For the estimated homography $H=\left[\begin{array}{lll}h_{1} & h_{2} & h_{3}\end{array}\right]$, we can write

$$
\left[\begin{array}{lll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}
\end{array}\right]=K\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

- So $\mathbf{r}_{i} \equiv K^{-1} \mathbf{h}_{i}$.
- Since \mathbf{r}_{1} and \mathbf{r}_{2} are columns of a rotation matrix

$$
\begin{aligned}
& \mathbf{r}_{1}^{T} \mathbf{r}_{2}=0 \Longrightarrow \mathbf{h}_{1}^{T} K^{-T} K^{-1} \mathbf{h}_{2}=0 \\
& \mathbf{r}_{1}^{T} \mathbf{r}_{1}=1 \Longrightarrow \mathbf{h}_{1}^{T} K^{-T} K^{-1} \mathbf{h}_{1}=1 \\
& \mathbf{r}_{2}^{T} \mathbf{r}_{2}=1 \Longrightarrow \mathbf{h}_{2}^{T} K^{-T} K^{-1} \mathbf{h}_{2}=1
\end{aligned}
$$

- The term $K^{-T} K^{-1}$ is a symmetric and positive definite matrix that we denote by B.

$$
B=\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{12} & b_{22} & b_{23} \\
b_{13} & b_{23} & b_{33}
\end{array}\right)
$$

Camera Calibration Using 2D Checkerboard

- So for each homography (i.e., checkerboard image), we have two constraints

$$
\begin{aligned}
& \mathbf{h}_{1}^{T} B \mathbf{h}_{2}=0 \\
& \mathbf{h}_{1}^{T} B \mathbf{h}_{1}-\mathbf{h}_{2}^{T} B \mathbf{h}_{2}=0
\end{aligned}
$$

- For all images, these constraints can be written as a linear system $V \mathbf{b}=0$ from which $\mathbf{b}=\left(\begin{array}{llllll}b_{11} & b_{12} & b_{22} & b_{13} & b_{23} & b_{33}\end{array}\right)^{T}$ can be found via SVD.
- Matrix K can be recovered through the Cholsky decomposition of B.

$$
\operatorname{chol}(B)=A A^{T}
$$

which means that $K=A^{-T}$.

Camera Calibration Using 2D Checkerboard

- Once K is found, the extrinsic parameters can be found easily.

$$
\begin{aligned}
\mathbf{r}_{1} & \equiv K^{-1} \mathbf{h}_{1} \\
\mathbf{r}_{2} & \equiv K^{-1} \mathbf{h}_{2} \\
\mathbf{t} & \equiv K^{-1} \mathbf{h}_{3}
\end{aligned}
$$

and after normalising \mathbf{r}_{1} and \mathbf{r}_{2}, we can find the third column of R as $\mathbf{r}_{3} \equiv \mathbf{r}_{1} \times \mathbf{r}_{2}$.

- Notice that K is computed from B which is computed using the constraint $\mathbf{h}_{1}^{T} B \mathbf{h}_{1}=\mathbf{h}_{2}^{T} B \mathbf{h}_{2}$.
- This means that \mathbf{r}_{1} and \mathbf{r}_{2} will have the same magnitude m which represents the homogeneous scale of matrix K.

Camera Calibration Using 2D Checkerboard

- So the actual rotation and translation vectors are

$$
\begin{aligned}
\mathbf{r}_{1} & \leftarrow \frac{1}{m} \mathbf{r}_{1} \\
\mathbf{r}_{2} & \leftarrow \frac{1}{m} \mathbf{r}_{2} \\
\mathbf{r}_{3} & \leftarrow \mathbf{r}_{1} \times \mathbf{r}_{2} \\
\mathbf{t} & \leftarrow \frac{1}{m} \mathbf{t}
\end{aligned}
$$

