CS-465 Computer Vision

Nazar Khan

PUCIT

2. Background Mathematics

Vector Calculus

Eigenvectors

Optimization

Notation

- Scalars are denoted by lower-case letters like s, a, b.
- ▶ Vectors are denoted by lower-case bold letters like $\mathbf{x}, \mathbf{y}, \mathbf{v}$.
- ► Matrices are denoted by upper-case bold letters like M, D, A.
- Any vector $\mathbf{x} \in \mathbb{R}^d$ is by default a column vector.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

• The corresponding row vector is obtained as $\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}$.

Eigenvectors

Vectors

For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and $\mathbf{z} \in \mathbb{R}^k$

- ► Inner product $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_d y_d$ is a scalar value. Also called *dot product* or *scalar product*.
- Other representations: $\mathbf{x} \cdot \mathbf{y}$, (\mathbf{x}, \mathbf{y}) and $(\mathbf{x}, \mathbf{y}) > 0$.
- Represents similarity of vectors.
 - If $\mathbf{x}^T \mathbf{y} = 0$, then \mathbf{x} and \mathbf{y} are orthogonal vectors (in 2D, this means they are perpendicular).
- Euclidean norm of vector

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}} = \sqrt{x_1x_1 + x_2x_2 + \dots + x_dx_d}$$

represents the magnitude of the vector.

- Unit vector has norm 1. Also called normalised vector.
- If ||x|| = 1 and ||y|| = 1, and x^Ty = 0, then x and y are orthonormal vectors.
- Outer-product $\mathbf{x}\mathbf{z}^T$ is a $d \times k$ matrix.

Matrix and Vector Calculus

For vector $\mathbf{x} \in \mathbb{R}^d$, scalar function $f(\mathbf{x})$ and vector function $\mathbf{g}(\mathbf{x}) \in \mathbb{R}^k$

► The gradient operator ^d/_{dx} is also written as ∇_x or simply ∇ when the differentiation variable is implied.

$$\nabla_{\mathbf{x}} = \begin{bmatrix} \frac{\partial}{\partial x_{1}} \\ \frac{\partial}{\partial x_{2}} \\ \vdots \\ \frac{\partial}{\partial x_{d}} \end{bmatrix} \text{ so that } \nabla_{\mathbf{x}}(f(\mathbf{x})) = \frac{d}{d\mathbf{x}}(f(\mathbf{x})) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_{1}} \\ \frac{\partial f(\mathbf{x})}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_{d}} \end{bmatrix}$$
$$\mathbf{\nabla}_{\mathbf{x}}(\mathbf{g}(\mathbf{x})) = \frac{d}{d\mathbf{x}}(\mathbf{g}(\mathbf{x})) = \begin{bmatrix} \frac{\partial g_{1}(\mathbf{x})}{\partial x_{1}} & \frac{\partial g_{2}(\mathbf{x})}{\partial x_{1}} & \dots & \frac{\partial g_{k}(\mathbf{x})}{\partial x_{2}} \\ \frac{\partial g_{1}(\mathbf{x})}{\partial x_{2}} & \frac{\partial g_{2}(\mathbf{x})}{\partial x_{2}} & \dots & \frac{\partial g_{k}(\mathbf{x})}{\partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{1}(\mathbf{x})}{\partial x_{d}} & \frac{\partial g_{2}(\mathbf{x})}{\partial x_{d}} & \dots & \frac{\partial g_{k}(\mathbf{x})}{\partial x_{d}} \end{bmatrix}$$

Matrix and Vector Calculus

For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and matrices $\mathbf{M} \in \mathbb{R}^{k \times d}$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$

- $\nabla_{\mathbf{x}}(\mathbf{M}\mathbf{x}) = \mathbf{M}^T$
- $\blacktriangleright \nabla_{\mathsf{x}}(\mathsf{x}^{\mathsf{T}}\mathsf{A}\mathsf{x}) = (\mathsf{A} + \mathsf{A}^{\mathsf{T}})\mathsf{x}$
- For symmetric **A**, $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = 2\mathbf{A} \mathbf{x}$

Take-home Quiz 1: Prove all of the derivatives given above.

	Eigenvectors	Optimization	
Matrices as	linear operato	rs	

In a matrix transformation Mx, components of x are acted upon in a linear fashion.

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} m_{11}x_1 + m_{12}x_2 \\ m_{21}x_1 + m_{22}x_2 \end{bmatrix}$$

- *Every* matrix multiplication represents a linear transformation.
- Every linear transformation can be represented as a matrix multiplication.

Eigenvectors

- When a matrix M is multiplied with a vector v, the vector is linearly transformed.
 - Rotation/Shearing/Scaling
 - Scaling does not change the direction of the vector.
- ► If vector Mv is only a scaled version of v, then v is called an *eigenvector of* M.
- ► That is, if **v** is an eigenvector of **M** then

$$\mathbf{M}\mathbf{v} = \lambda\mathbf{v}$$

where scaling factor λ is also called the *eigenvalue of* M corresponding to eigenvector **v**.

Constrained Optimization

For optimizing a function f(x), the gradient of f must vanish at the optimizer x*.

$$\nabla f|_{\mathbf{x}^*} = \mathbf{0}$$

For optimizing a function f(x) subject to some constraint g(x) = 0, the gradient of the so-called Lagrange function

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

must vanish at the optimizer $\boldsymbol{x}^*.$ That is,

$$\nabla L(\mathbf{x},\lambda) = \nabla f|_{\mathbf{x}^*} + \lambda \nabla g|_{\mathbf{x}^*} = 0$$

where λ is the Lagrange (or undetermined) multiplier.

Constrained Optimization

- Quite often, we will need to maximize x^TMx with respect to x where M is a symmetric, positive definite matrix.
 - Trivial solution: x = inf
- ► To prevent trivial solution, we must constrain the norm of x. For example, $\mathbf{x}^T \mathbf{x} = 1$.
- Lagrangian becomes $L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{M} \mathbf{x} + \lambda (1 \mathbf{x}^T \mathbf{x})$
- Use $\nabla_{\mathbf{x}} L|_{\mathbf{x}^*} = \mathbf{0}$ and $\nabla_{\lambda} L|_{\lambda^*} = \mathbf{0}$ to solve for optimal \mathbf{x}^* .
- For minimizing $\mathbf{x}^T \mathbf{M} \mathbf{x}$ wrt \mathbf{x} , $L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{M} \mathbf{x} \lambda (1 \mathbf{x}^T \mathbf{x})$.

Take-home Quiz 1: Show that the non-trivial maximizer of $\mathbf{x}^T \mathbf{M} \mathbf{x}$ is the eigenvector of **M** corresponding to the largest eigenvalue.

Singular Value Decomposition

- ► Any rectangular m × n matrix A with real values can be decomposed as A = UDV^T where
 - **U** is an $m \times m$ orthogonal matrix $(\mathbf{U}^T \mathbf{U} = \mathbf{I}_m)$
 - ▶ **V** is an $n \times n$ orthogonal matrix (**V**^T**V** = **I**_n) and
 - ▶ **D** is an *m* × *n* diagonal matrix
- Columns of U are orthonormal eigenvectors of AA^T.
- Columns of V are orthonormal eigenvectors of $A^T A$.
- Diagonal of D contains the square roots of eigenvalues from U or V in descending order.
 - $\blacktriangleright D_{11} \geq D_{22} \geq \ldots D_n.$
 - Also called the *singular values of* **A**.

Taylor Series Approximation

If values of a function f(a) and its derivatives f'(a), f''(a),... are known at a value a, then we can approximate f(x) for x close to a via the Taylor series expansion

$$f(x) \approx f(a) + (x-a)^{1} \frac{f'(a)}{1!} + (x-a)^{2} \frac{f''(a)}{2!} + (x-a)^{3} \frac{f'''(a)}{3!} + O((x-a)^{4})$$

• For example, for x around a = 0

▶ $sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ ▶ $e^x \approx 1 + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$

It is often convenient to use the first-order Taylor expansion

$$f(x) \approx f(a) + (x - a)f'(a)$$

Optimization

Taylor Series Approximation Not very useful for x not close to a

Figure: The sin() function (blue) is closely approximated around 0 by its Taylor polynomials. The 7th order approximation is good for a full period centered at 0. However, it becomes poor for $|x - 0| > \pi$.

Optimization

Image Coordinates

Cartesian axis					
y axis ψ θ x axis					

+ve x-axis from left to right. +ve y-axis goes upwards. +ve x-axis goes downwards. +ve y-axis from left to right.

For both coordinate systems, angles are always measured in counter-clockwise direction from positive x-axis.

