CS-465 Computer Vision

Nazar Khan

PUCIT

3. Image Filtering

Convolution

For two functions f(τ) and g(τ) defined over ℝ, continuous convolution is defined as

$$(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

 $= \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$

► For two functions f[m] and g[m] defined over Z, discrete convolution is defined as

$$(f * g)[n] := \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$
$$= \sum_{m=-\infty}^{\infty} f[n-m]g[m]$$

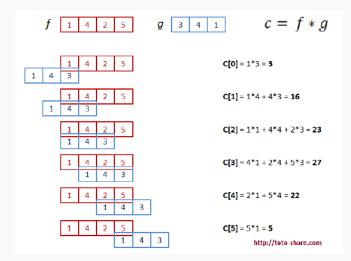
Gaussian Kernel

1D Convolution *Example Continuous*

Source: http://www.texample.net/tikz/examples/convolution-of-two-functions/

Nazar Khan

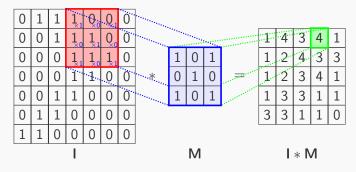
1D Convolution *Example Discrete*



- Integral/sum of the product of two functions after one is reversed and shifted.
- Central role in image processing.
- ▶ For 2D images *I* and *M*, convolution is defined as

$$(I * M)[i,j] := \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} I[k,l] M[i-k,j-l]$$
$$= \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} I[i-k,j-l] M[k,l]$$

2D Convolution *Example*



Modified from https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution M is usually called a *mask* or *kernel*.

2D Convolution Applying a mask to an image

- In order to obtain $I_2 = I_1 * M$
 - **1.** First flip the mask M in both dimensions.
 - 2. For each pixel p in I_1
 - 2.1 Place *mask origin* on top of the pixel.
 - 2.2 Multiply each mask weight with the pixel value under it.
 - **2.3** Sum the result and put in location of the pixel p in I_2 .
- Any pixel can be defined as the origin of the mask. Usually it is the central pixel.

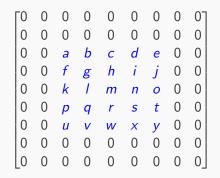
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

Dealing with boundaries

- What about edge and corner pixels where the mask goes outside the image boundaries?
 - Expand image I_1 with virtual pixels. Options are:
 - 1. Fill with a particular value, e.g. zeros.
 - 2. Replicating boundaries: fill with nearest pixel value.
 - 3. Reflecting boundaries: mirror the boundary
 - ► Fatalism: just ignore them. Not recommended since size of *l*₂ will shrink.

Dealing with boundaries *Expand by zeros*

For a 5 \times 5 image and 5 \times 5 mask



Dealing with boundaries *Replicating boundaries*

For a 5 \times 5 image and 5 \times 5 mask

Га	а	а	b	С	d	е	е	e]	
а	а	а	b	С	d	е	е	e	
a	а	а	b	С	d	е	е	e	
f	f	f	g	h	i	j	j	j	
k	k	k	1	т	n	0	0	0	
p	р	р	q	r	S	t	t	t	
u	и	u	V	W	X	У	У	у	
u	и	и	V	W	Х	У	У	У	
Lu	и	и	V	W	X	у	у	у」	

Dealing with boundaries *Reflecting boundaries*

For a 5 \times 5 image and 5 \times 5 mask

Гm	1	k	1	т	п	0	п	m]
h	g	f	g	h	i	j	i	h
с	b	а	b	С	d	е	d	с
h	g	f	g	h	i	j	i	h
m	1	k	1	m	n	0	п	m
r	q	р	q	r	S	t	S	r
w	V	u	V	W	x	y	X	w
r	q	р	q	r	S	t	S	r
m	1	k	1	т	п	0	п	m

Gaussian Kernel

Convolution

Convolution Masks

- $\begin{array}{c|c} \bullet & \text{Different masks lead to different effects.} \\ & 1 & 1 & 1 \\ & \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} & \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} & \frac{1}{18} \begin{bmatrix} 2 & 3 & 2 \\ 0 & 0 & 0 \\ -2 & -3 & -2 \end{bmatrix} \\ & \text{Averaging} & \text{y-Derivative} & \text{y-Derivative \& averaging} \end{array}$
- Interactive demo at http://matlabtricks.com/post-5/ 3x3-convolution-kernels-with-online-demo
- ► Cost of convolving an m×n image with a k×k kernel is k² multiplications plus k² - 1 additions repeated for m×n locations. That is mn(2k² - 1) operations.

Properties of Convolution

Commutativity: I * M = M * I

Signal and kernel play an equal role.

► Associativity: (I * M₁) * M₂ = I * (M₁ * M₂)

- Successive convolutions with kernels M₁ and M₂ is equivalent to a single convolution with kernel M1 * M2 which is computationally much cheaper since kernels are usually smaller than images.
- Shift Invariance: Translation(I * M) = Translation(I) * M
 - Translation of convolved signal is equivalent to convolution of translated signal.
- Linearity: $(aI + bJ) * M = a(I * M) + b(J * M) \forall a, b \in \mathbb{R}$
 - Single convolution of a linear combination of signals is equivalent to a linear combination of multiple convolutions.
 - Obviously, the single convolution is *computationally much cheaper*.

Because of the last two properties, convolution is called *linear shift invariant (LSI)* filtering.

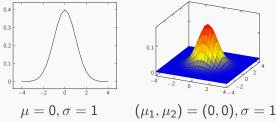
Gaussian Kernel

Gaussian Kernel

A widely used mask for smoothing is the *Gaussian* kernel.

$$1D: g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$2D: G(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x-\mu_1)^2 + (y-\mu_2)^2}{2\sigma^2}\right)$$

where μ is the 1D mean, (μ_1,μ_2) is the 2D mean and σ^2 is the variance.



Gaussian Kernel Discrete approximation

1D: [0.006 0.061 0.242 0.343 0.242 0.061 0.006 2D: [0.006 0.061 0.242 0.343 0.242 0.061 0.006 2D: [0.006 0.061 0.242 0.343 0.242 0.061 0.006 0.242 0.343 0.242 0.061 0.006 0.242

Separability of Gaussian Kernels: Convolution with 2D Gaussian can be performed via two successive convolutions with 1D Gaussians which are computationally much cheaper.

Gaussian Kernel Discrete integer approximation

$$1D: \frac{1}{961} \begin{bmatrix} 6 & 61 & 242 & 343 & 242 & 61 & 6 \end{bmatrix}$$
$$2D: \frac{1}{961^2} \begin{bmatrix} 6 & 61 & 242 & 343 & 242 & 61 & 6 \end{bmatrix} * \begin{bmatrix} 6 \\ 61 \\ 242 \\ 343 \\ 242 \\ 61 \\ 6 \end{bmatrix}$$

For images stored in unsigned 8-bit integer format (uint8), integer operations are faster than floating point operations.

Python Examples Convolution with 5×5 averaging mask

```
import cv2
1
 2
        import numpy as np
        from matplotlib import pyplot as plt
3
4
        img = cv2.imread('book.png') #OpenCV uses BGR color order
5
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #matplotlib uses RGB
6
7
        kernel = np.ones((5,5),np.float32)/25
8
        dst = cv2.filter2D(img, -1, kernel)
9
10
        plt.subplot(121),plt.imshow(img),plt.title('Original')
11
        plt.xticks([]), plt.yticks([])
12
        plt.subplot(122),plt.imshow(dst),plt.title('Averaging')
13
        plt.xticks([]), plt.yticks([])
14
15
        plt.show()
```

Original 5 x 5 Averaging 15 x 15 Averaging 8 25 x 25 Averaging 35 x 35 Averaging 45 x 45 Averaging

Figure: Effect of convolving with averaging masks of increasing size. Author: N. Khan (2018)

Python Examples Other filters

- ► Kernel in line 8 can be defined according to your needs.
- Line 8 can be commented and line 9 can be replaced by
 - dst = cv2.blur(img,(5,5)) for the same effect
 - dst = cv2.GaussianBlur(img,(5,5),0) for Gaussian smoothing
 - dst = cv2.medianBlur(img,5) for median filtering
 - dst = cv2.bilateralFilter(img,9,75,75) for edge preserving smoothing
- Any filtering performed via convolution is *linear filtering*.
- Non-linear filtering yields additional benefits.
 - Median filtering
 - Bilateral filtering
 - Non-local means

15 x 15 Gaussian

5 x 5 Gaussian

63

Original

25 x 25 Gaussian

45 x 45 Gaussian

Figure: Effect of convolving with Gaussian masks of increasing size. Author: N. Khan (2018)

Figure: Effect of median filtering with masks of increasing size. Author: N. Khan (2018)

Figure: Comparison of 35×35 Gaussian smoothing with bilateral filter of diameter 35. Notice how bilateral filtering preserves edges. Author: N. Khan (2018)