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Corners Structure Tensor Corner Detection Scale Space

Corners

I Just like edges, corners are perceptually important.
I More compact summary of an image since corners are fewer than

edge pixels.
I A patch around a corner pixel is different from all other surrounding

patches.

Vertical edge Horizontal edge Corner Corner
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How to compare patches
SSD

I For two patches P and Q of size m × n pixels, their dissimilarity
can be computed using a sum-of-squared distances

SSD(P,Q) =
m∑
i=1

n∑
j=1

(Pij − Qij)
2 (1)

I Alternatively, weighted dissimilarity can be computed as

SSD(P,Q) =
m∑
i=1

n∑
j=1

wij(Pij − Qij)
2 (2)

where weight wij determines the importance of location (i , j).
I For example, Gaussian weights give more importance to the central

pixel difference.
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Taylor’s Approximation for 2D Functions

I Recall that Taylor’s approximation for 1D functions is

f (x + u) = f (x) +
u

1!
f ′(x) +

u2

2!
f ′′(x) + O(u3) (3)

I For 2D functions, a 2nd-order Taylor’s approximation is

f (x + u, y + v) ≈f (x , y) + u

1!
fx(x , y) +

v

1!
fy (x , y)︸ ︷︷ ︸

1st-order

+
u2

2!
fxx(x , y) +

v2

2!
fyy (x , y) +

2uv
2!

fxy (x , y)︸ ︷︷ ︸
2nd-order
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Structure Tensor

I Let us consider patches of size 3× 3 although the method works for
patches of any size and shape.

I The color value of a pixel displaced from (x , y) by the direction
vector d = (u, v)T is I (x + u, y + v).

I Weighted SSD between a patch at (x , y) and a patch displaced by
the direction vector d = (u, v)T is computed as

SSD(u, v) =
x+1∑

i=x−1

y+1∑
j=y−1

wij(I (i + u, j + v)− I (i , j))2

I Using a 1st-order Taylor’s approximation

I (i + u, j + v) ≈ I (i , j) + uIx(i , j) + vIy (i , j)
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Structure Tensor

I Weighted SSD can be approximated as

SSD(u, v) ≈
x+1∑

i=x−1

y+1∑
j=y−1

wij(I (i + u, j + v)− I (i , j))2

=
x+1∑

i=x−1

y+1∑
j=y−1

wij(I (i , j) + uIx(i , j) + vIy (i , j)− I (i , j))2

=
x+1∑

i=x−1

y+1∑
j=y−1

wij(uIx(i , j) + vIy (i , j))
2 =

x+1∑
i=x−1

y+1∑
j=y−1

wij(dT∇Iij)2

=
x+1∑

i=x−1

y+1∑
j=y−1

wij(dT∇Iij)(dT∇Iij)T =
x+1∑

i=x−1

y+1∑
j=y−1

wijdT∇Iij∇ITij d

= dT

 x+1∑
i=x−1

y+1∑
j=y−1

wij∇Iij∇ITij

d = dTAd
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Structure Tensor

I The 2× 2 matrix A is a weighted summation of the outer-products

∇Iij∇ITij =

[
I 2x Ix Iy
Ix Iy I 2y

]
ij

I For Gaussian weights, A can be computed via Gaussian convolution

A =

[
Gρ ∗ I 2x Gρ ∗ Ix Iy
Gρ ∗ Ix Iy Gρ ∗ I 2y

]
I In this form A is known as the structure tensor.
I The structure tensor plays an important role in other areas of

computer vision as well.
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Corner Detection via Structure Tensor

I Basic idea: To find if pixel (x , y) is a corner, first find the direction
in which patches become most dissimilar.

I That is, the direction d = (u, v)T that maximises the SSD dTAd
from the patch centered at (x , y).

d∗ = argmax
d

dTAd s.t. ‖d‖ = 1

where constraint ‖d‖ = 1 ensures a non-trivial solution.
I Using the method of Lagrange multipliers, d∗ is the eigenvector of

A corresponding to the larger eigenvalue (Take-home Quiz 1).
I The SSD in the direction of any eigenvector is the corresponding

eigenvalue. Prove it.
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Corner Detection via Structure Tensor

I What do the eigenvalues of the structure tensor reveal about the
local structure around a pixel?

λlarge ≈ λsmall ≈ 0 =⇒ flat region
λlarge >> λsmall ≈ 0 =⇒ edge
λlarge > λsmall >> 0 =⇒ corner

I So a simple corner detection criterion could be λsmall > τ .
I But eigenvalue computation is a little expensive.
I Using the facts that

1. det(A) = A11A22 − A2
12 = λlargeλsmall, and

2. trace(A) = A11 + A22 = λlarge + λsmall

popular corner detectors avoid eigenvalue computations.
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Corner Detection via Structure Tensor

I Popular corner detectors use a cornerness measure and then a
detection criterion.

Method Cornerness Measure Detector
Harris det(A)

trace(A) trace(A) > τ

Rohr det(A) det(A) > τ

I To avoid multiple detections, non-maxima supression must be
performed on the cornerness values in 8-neighourhoods or larger.
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Corner Detection
Algorithm

Input: Image I .
Parameters:

1) Noise smoothing scale σ,
2) Gradient smoothing scale ρ (should be greater than σ),
3) Threshold τ .

1. Compute Gaussian derivatives at noise smoothing scale σ
Ix = ∂Gσ

∂x ∗ I and Iy = ∂Gσ
∂y ∗ I

2. Compute the products
I 2x , I 2y and Ix Iy

3. Smooth the products at gradient smoothing scale ρ
Gρ ∗ I 2x , Gρ ∗ I 2y and Gρ ∗ Ix Iy

and construct structure tensor A at every pixel.
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Corner Detection
Algorithm

4. Compute cornerness C (i , j) at every pixel as
Harris Rohr

Cij =
A11A22−A2

12
A11+A22

Cij = A11A22 − A2
12

5. Perform non-maxima supression in 8-neighbourhood on cornerness
image C .

6. Find corner pixels by thresholding remaining local maxima via
Harris Rohr

trace(A) = A11 + A22 > τ det(A) = A11A22 − A2
12 > τ
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Original Determinant Trace

Cornerness NMS on Cornerness Harris Corners

Figure: Harris corners detected with σ = 0.2, ρ = 2 and τ = 90th
percentile of trace values. Author: N. Khan (2018)



Original Determinant Trace

Cornerness NMS on Cornerness Harris Corners

Figure: Harris corners detected with σ = 0.5, ρ = 2 and τ = 80th
percentile of trace values. Author: N. Khan (2018)



Original Determinant Rohr Corners

Figure: Corners detected by Rohr’s method with σ = 1, ρ = 6 and
τ = 98th percentile of determinant values for top row and 95th for
bottom row. Author: N. Khan (2018)



Original Determinant Rohr Corners

Figure: Corners detected by Rohr’s method with ρ = 6 and τ = 95th
percentile of determinant values. Noise smoothness scale was σ = 3 for
top row and σ = 4 for bottom row. Author: N. Khan (2018)
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Corners depend on scale

I Structure tensors and therefore corner detection are not scale
invariant.

I Therefore, corner detection should take place at multiple scales.
I This leads to the concept of a scale space.
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Scale Space via Gaussian Pyramids

Figure: A Gaussian pyramid with 3 levels and 5 smoothing scales. Top
to bottom: Subsampling in both dimensions by factor 2i for
i = 0, . . . , 2. Left to right: Gaussian blurring with σ =

√
2
j
σ0 for

j = 0, . . . , 4 and σ0 =
√

2. Author: N. Khan (2018)
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Scale Space via Gaussian Pyramids

Figure: Corner detection in scale space obtained via Gaussian pyramids.
Some corners are detected only at certain resolutions and certain
smoothness scales. Corners that persist across resolutions and
smoothness scales are called strong or stable corners. Author: N. Khan
(2018)
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Scale Space via Gaussian Pyramids

function makeGaussianPyramid(I ,num_levels,num_scales,k ,σ0)
for i = 0 to num_levels-1

J = subsample(I , 1
2i )

for s = 0 to num_scales-1
σ = ksσ0
GP[i , s] = J ∗ Gσ
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