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OFC Local Methods Global Methods

Optic Flow

Where does pixel (x , y) in frame z move to in frame z + 1?[
x ′

y ′

]
=

[
x
y

]
+

[
u
v

]
We want to find the displacement vector (u, v)T for every
pixel.

I Input: image sequence I (x , y , z), where (x , y) specifies the location
and z denotes time/frame number

I Goal: displacement vector field of the image structures:
I optic flow (u(x , y , z), v(x , y , z))

I Such correspondence problems are key problems in computer vision.
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Grey Value Constancy Assumption

Corresponding pixels should have the same grey value.

Thus, the optic flow between frame z and z+1 should satisfy

I (x + u, y + v , z + 1) = I (x , y , z)

=⇒ I (x , y , z) + uIx(x , y , z) + vIy (x , y , z) + 1Iz(x , y , z) ≈ I (x , y , z)

=⇒ Ix(x , y , z)u + Iy (x , y , z)v + Iz(x , y , z) ≈ 0

assuming (u, v) is a small displacement.

Linearized optic flow constraint (OFC)

Ixu + Iyv + Iz = 0

where location (x , y , z) is implied.
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How good are the assumptions?

I We have made two assumptions
1. Gray value constancy
2. Small displacements (since we use first-order Taylor series

approximation)
I Both assumptions are (almost) true in surprisingly many scenarios.

1. Gray values do not change much between consecutive1 frames.
2. Objects do not move too much between consecutive frames.

I For large displacements, image pyramid can be used.

1For a video recorded at 25 frames per second (fps), consecutive frames are
only 1

24 seconds apart.
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Aperture Problem

Complete Flow Normal Flow No Flow

When seen through an aperture, true movement cannot be
determined. Only the component of movement normal to
edge direction can be determined.
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Normal Flow

I The OFC is one equation in two unknowns (infinite solutions).
I Can be written as [

u
v

]T
∇I + Iz = 0

I Adding any flow component orthogonal to image gradient does not
affect the OFC.([

u
v

]
+k∇I⊥

)T

∇I + Iz =

[
u
v

]T
∇I+k∇I⊥T∇I︸ ︷︷ ︸

0

+ Iz

=

[
u
v

]T
∇I + Iz

= 0
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Normal Flow

∇I
‖∇I‖

∇I⊥
‖∇I‖

(u, v)

(un, vn)

[
un
vn

]
=

([
u
v

]
• ∇I
‖∇I‖

)
∇I
‖∇I‖

=
−Iz
‖∇I‖

∇I
‖∇I‖

(
∵
[
u
v

]
• ∇I + Iz = 0

)
=
−1

I 2x + I 2y

[
Ix Iz
Iy Iz

]

I Only the component of flow in the direction of the gradient ∇I can
be computed.

I Since gradient is normal to the edge direction, this flow vector is
called the normal flow.

I To compute a better estimate of optic flow, we need to make some
assumptions.
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Local Optic Flow Method of Lucas & Kanade

I Lucas & Kanade make the following assumption:

Pixels around (i , j) all have the same displacement (u, v).

I For 3× 3 neighbourhoods, this gives 9 OFCs all having the same 2
unknowns (u, v).

I The optimal unknown displacement minimizes the
sum-squared-error

E (u, v) =
1
2

∑
Nij

(Ixu + Iyv + Iz)
2
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Local Optic Flow Method of Lucas & Kanade

I Setting ∂E
∂u = 0 and ∂E

∂v = 0 yields a linear system[ ∑
Nij

I 2x
∑
Nij

Ix Iy∑
Nij

Ix Iy
∑
Nij

I 2y

] [
u∗

v∗

]
=

[
−
∑
Nij

Ix Iz
−
∑
Nij

Iy Iz

]

I Replacing the sums by Gaussian averaging yields[
Gρ ∗ I 2x Gρ ∗ Ix Iy
Gρ ∗ Ix Iy Gρ ∗ I 2y

]
︸ ︷︷ ︸

A

[
u∗

v∗

]
=

[
−Gρ ∗ Ix Iz
−Gρ ∗ Iy Iz

]
(1)

I Notice the re-appearance of the structure tensor which now serves
as the system matrix. Previously, we used it for corner detection.

I Flow vector can be found if rank(A) = 2.
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Local Optic Flow Method of Lucas & Kanade

I If rank(A) = 0, no gradients exist in the neighbourhood. So no
optic flow can be computed.

I If rank(A) = 1, gradient vectors over all pixels in the
neighbourhood are identical. Only normal flow can be computed.[

un
vn

]
=
−1

I 2x + I 2y

[
Ix Iz
Iy Iz

]
I To save computations, avoid computing rank.

trace(A) = A11 + A22 ≈ 0 =⇒ rank(A) = 0

trace(A) 6≈ 0 and det(A) = A11A22 − A2
12 ≈ 0 =⇒ rank(A) = 1
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Lucas & Kanade
Algorithm

Input: Frames I1 and I2.
Parameters:

1) Noise smoothing scale σ,
2) Gradient smoothing scale ρ,
3) Thresholds τtrace and τdet.

1. Compute Gaussian derivatives at noise smoothing scale σ
Ix = ∂Gσ

∂x ∗ I1 and Iy = ∂Gσ
∂y ∗ I1

2. Compute temporal derivative Iz = I2 − I1.
3. Compute the products

I 2x I 2y Ix Iy Ix Iz and Iy Iz

4. Smooth the products at gradient smoothing scale ρ
Gρ ∗ I 2x Gρ ∗ I 2y Gρ ∗ Ix Iy Gρ ∗ Ix Iz and Gρ ∗ Iy Iz

and construct the linear system in (1) at every pixel.
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Lucas & Kanade
Algorithm

5. For every pixel, solve the linear system conditioned on the rank.
if A11 + A22 < τtrace

rank(A)=0 so no flow
else if A11A22 − A2

12 < τdet
rank(A)=1 so normal flow

else
rank(A)=2 so complete optic flow
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Visualising Displacement Vectors
The HSV Color Space

Figure: The HSV color space. Taken from
http://reilley4color.blogspot.com/
2016/05/munsell-hue-circle.html.

Each color is represented
by 3 values

1. Hue or shade as an
angle from 0◦ to 360◦.

2. Saturation or strength
of the color

3. Value or brightness
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Visualising Displacement Vectors

Figure: Vector angle represented by hue/shade of color and vector
magnitude represented by the saturation/strength of color. HSV color
space is useful for such a mapping. H(x , y) = θ(x , y),
S(x , y) =

√
u(x , y)2 + v(x , y)2 and V (x , y) = constant.
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Lucas & Kanade

Figure: Left to right: frame 1, frame 2, flow classification and false
color visualization of optic flow vectors. For flow classification: white =
optic flow, gray = normal flow and black = no flow. Integration scale
was ρ = 1. Author: N. Khan (2015)
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Lucas & Kanade

Figure: Left to right: frame 1, frame 2, flow classification and false color
visualization of optic flow vectors. For flow classification: white = optic
flow, gray = normal flow and black = no flow. Increasing the integration
scale ρ to 4 fills up pixels with no flow using values from neighbouring
pixels having normal or complete optic flow. Author: N. Khan (2015)
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Lucas & Kanade
Summary

Advantages
I Simple and fast method.
I Requires only two frames (low memory requirements).
I Good value for money: results often superior to more complicated

approaches.
Disadvantages
I Problems at locations where the local constancy assumption is

violated: flow discontinuities and non-translatory motion (e.g.
rotation).

I Local method that does not compute the flow field at all locations.

Next we study a global method that produces dense flow fields
(i.e., at every pixel).
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Variational Method of Horn & Schunck

I At some given time z the optic flow field is determined as
minimising the function (u(x , y), v(x , y))T of the energy functional

E (u, v) =
1
2

∑
x ,y

(Ixu + Iyv + Iz)
2︸ ︷︷ ︸

data term

+α
(
‖∇u‖2 + ‖∇v‖2

)︸ ︷︷ ︸
smoothness term


I Has a unique solution that depends continuously on the image data.
I Global method since optic flow at (x , y) depends on all pixels in

both frames.

Notation Alert!
u and v are 2D arrays of the same size as the frame but inside
the summation they are also used to refer to a pixel location.
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Variational Method of Horn & Schunck

I Regularisation parameter α > 0 determines smoothness of the flow
field.

I α→ 0 yields the normal flow.
I The larger the value of α, the smoother the flow field.

I Dense flow fields due to filling-in effect:
I At locations, where no reliable flow estimation is possible (small
‖∇I‖), the smoothness term dominates over the data term.

I This propagates data from the neighbourhood.
I No additional threshold parameters necessary.
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Functionals and Calculus of Variations

I Since u is a function, E (u, v) is a function of a function. A
function of a function is also called a functional.

I Normal calculus can optimize functions f (x) by requiring
d
dx f |x∗ = 0.

I Functionals are optimized via calculus of variations.
I Optimizer of an energy functional

E (u, v) =
∑
x ,y

F (x , y , u, v , ux , uy , vx , vy )

must satisfy the so-called Euler-Lagrange equations

∂xFux + ∂yFuy − Fu = 0
∂xFvx + ∂yFvy − Fv = 0

with some boundary conditions.
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Functionals and Calculus of Variations

I For our energy functional E (u, v),

F =
1
2
(Ixu + Iyv + Iz)

2 +
α

2
(
u2
x + u2

y + v2
x + v2

y

)
with partial derivatives

Fu = Ix (Ixu + Iyv + Iz)

Fv = Iy (Ixu + Iyv + Iz)

Fux = αux

Fuy = αuy

Fvx = αvx

Fvy = αvy
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Variational Method of Horn & Schunck

I So the Euler-Lagrange equations can be written as

α(uxx + uyy )− Ix (Ixu + Iyv + Iz) = 0
α(vxx + vyy )− Iy (Ixu + Iyv + Iz) = 0

I At the ith pixel, after writing out the first and second order
derivatives, we obtain

α

h2

∑
j∈Ni

(uj − ui )− Ixi (Ixiui + Iyivi + Izi ) = 0

α

h2

∑
j∈Ni

(vj − vi )− Iyi (Ixiui + Iyivi + Izi ) = 0

where h is the grid size (usually 1).
I Two equations for every pixel.
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Variational Method of Horn & Schunck

I For all pixels, this can be written as a sparse but very large linear
system Bx = d.

I Size of B will be 69GB for a 256× 256 image!
I Large, sparse linear systems can be solved efficiently by Jacobi’s

iterative method.
1. Let B = D−N with a diagonal matrix D and a remainder N.
2. Then the problem Dx = Nx + d is solved iteratively using

x(k+1) = D−1(Nx(k) + d)

I 1 matrix-vector product, 1 vector addition, 1 vector scaling per
iteration.
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Variational Method of Horn & Schunck

I All of the above boils down to a very simple iterative scheme

u
(k+1)
i =

α
h2

∑
j∈Ni

u
(k)
j − Ixi

(
Iyiv

(k)
i + Izi

)
α
h2 |Ni |+ I 2xi

v
(k+1)
i =

α
h2

∑
j∈Ni

v
(k)
j − Iyi

(
Ixiu

(k)
i + Izi

)
α
h2 |Ni |+ I 2xi

with k = 0, 1, 2, . . . and an arbitrary initialisation (e.g. zero vector).
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Variational Method of Horn & Schunck

Figure: Left to right: Dense and smooth optic flow fields obtained via
Horn & Schunck’s variational method for smoothness parameter
α = 0.0000001, 0.00001 and 0.001 after 400 iterations. Noise smoothing
scale was σ = 0.5. Author: N. Khan (2018)
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Variational Method of Horn & Schunck
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Variational Method of Horn & Schunck
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Variational Method of Horn & Schunck

Figure: Left to right: Dense and smooth optic flow fields obtained via
Horn & Schunck’s variational method for smoothness parameter
α = 0.0001, 0.001 and 0.01 after 400 iterations. Noise smoothing scale
was σ = 0.5. Author: N. Khan (2018)
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Variational Method of Horn & Schunck
Summary

I Variational methods for computing optic flow are global methods.
I Create dense flow fields by filling-in.
I Model assumptions of the variational Horn and Schunck approach:

1. grey value constancy,
2. smoothness of the flow field

I Mathematically well-founded method.
I Minimising the energy functional leads to coupled differential

equations.
I Discretisation creates a large, sparse linear system of equations that

can be solved iteratively, e.g., using the Jacobi method.
I Variational methods can be extended and generalised in numerous

ways, with respect to both models and algorithms.
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