CS-465 Computer Vision

Nazar Khan

PUCIT

9. Optic Flow

Optic Flow

Optic Flow

Optic Flow

Where does pixel (x, y) in frame z move to in frame z + 1? $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} u \\ y \end{bmatrix}$

We want to find the displacement vector $(u, v)^T$ for every pixel.

- Input: image sequence I(x, y, z), where (x, y) specifies the location and z denotes time/frame number
- ► Goal: displacement vector field of the image structures:

• optic flow (u(x, y, z), v(x, y, z))

Such correspondence problems are key problems in computer vision.

Grey Value Constancy Assumption

Corresponding pixels should have the same grey value.

Thus, the optic flow between frame z and z+1 should satisfy

$$I(x + u, y + v, z + 1) = I(x, y, z)$$

$$\implies I(x, y, z) + uI_x(x, y, z) + vI_y(x, y, z) + 1I_z(x, y, z) \approx I(x, y, z)$$

$$\implies I_x(x, y, z)u + I_y(x, y, z)v + I_z(x, y, z) \approx 0$$

assuming (u, v) is a small displacement.

Linearized optic flow constraint (OFC)

$$I_x u + I_y v + I_z = 0$$

where location (x, y, z) is implied.

How good are the assumptions?

- We have made two assumptions
 - 1. Gray value constancy
 - 2. Small displacements (since we use first-order Taylor series approximation)
- Both assumptions are (almost) true in surprisingly many scenarios.
 - 1. Gray values do not change much between *consecutive*¹ frames.
 - 2. Objects do not move too much between *consecutive* frames.
 - ► For large displacements, image pyramid can be used.

 $^1 \text{For}$ a video recorded at 25 frames per second (fps), consecutive frames are only $\frac{1}{24}$ seconds apart.

Normal Flow

- ▶ The OFC is one equation in two unknowns (infinite solutions).
- Can be written as

$$\begin{bmatrix} u \\ v \end{bmatrix}^T \nabla I + I_z = 0$$

 Adding any flow component orthogonal to image gradient does not affect the OFC.

$$\left(\begin{bmatrix} u \\ v \end{bmatrix} + k \nabla I^{\perp} \right)^{T} \nabla I + I_{z} = \begin{bmatrix} u \\ v \end{bmatrix}^{T} \nabla I + k \underbrace{\nabla I^{\perp T} \nabla I}_{0} + I_{z}$$
$$= \begin{bmatrix} u \\ v \end{bmatrix}^{T} \nabla I + I_{z}$$
$$= 0$$

Normal Flow

$$\begin{array}{c} \nabla I^{\perp} \\ \overline{|\nabla I||} \\ \hline \\ (u, v) \\ (u_n, v_n) \\ \overline{|\nabla I||} \end{array} \begin{bmatrix} u_n \\ v_n \end{bmatrix} = \left(\begin{bmatrix} u \\ v \end{bmatrix} \bullet \frac{\nabla I}{\|\nabla I\|} \right) \frac{\nabla I}{\|\nabla I\|} \\ = \frac{-I_z}{\|\nabla I\|} \frac{\nabla I}{\|\nabla I\|} \quad (\because \begin{bmatrix} u \\ v \end{bmatrix} \bullet \nabla I + I_z = 0) \\ = \frac{-1}{I_z^2 + I_y^2} \begin{bmatrix} I_x I_z \\ I_y I_z \end{bmatrix}$$

- Only the component of flow in the direction of the gradient ∇*I* can be computed.
- Since gradient is normal to the edge direction, this flow vector is called the *normal flow*.
- To compute a better estimate of optic flow, we need to make some assumptions.

Local Optic Flow Method of Lucas & Kanade

Lucas & Kanade make the following assumption:

Pixels around (i, j) all have the same displacement (u, v).

- For 3 × 3 neighbourhoods, this gives 9 OFCs all having the same 2 unknowns (u, v).
- The optimal unknown displacement minimizes the sum-squared-error

$$\mathsf{E}(u,v) = \frac{1}{2} \sum_{\mathcal{N}_{ij}} (I_x u + I_y v + I_z)^2$$

Local Optic Flow Method of Lucas & Kanade

► Setting
$$\frac{\partial E}{\partial u} = 0$$
 and $\frac{\partial E}{\partial v} = 0$ yields a linear system

$$\begin{bmatrix} \sum_{\mathcal{N}_{ij}} I_x^2 & \sum_{\mathcal{N}_{ij}} I_x I_y \\ \sum_{\mathcal{N}_{ij}} I_x I_y & \sum_{\mathcal{N}_{ij}} I_y^2 \end{bmatrix} \begin{bmatrix} u^* \\ v^* \end{bmatrix} = \begin{bmatrix} -\sum_{\mathcal{N}_{ij}} I_x I_z \\ -\sum_{\mathcal{N}_{ij}} I_y I_z \end{bmatrix}$$

Replacing the sums by Gaussian averaging yields

$$\underbrace{\begin{bmatrix} G_{\rho} * I_{x}^{2} & G_{\rho} * I_{x}I_{y} \\ G_{\rho} * I_{x}I_{y} & G_{\rho} * I_{y}^{2} \end{bmatrix}}_{A} \begin{bmatrix} u^{*} \\ v^{*} \end{bmatrix} = \begin{bmatrix} -G_{\rho} * I_{x}I_{z} \\ -G_{\rho} * I_{y}I_{z} \end{bmatrix}$$
(1)

- Notice the re-appearance of the structure tensor which now serves as the system matrix. Previously, we used it for corner detection.
- Flow vector can be found if rank(A) = 2.

Local Optic Flow Method of Lucas & Kanade

- If rank(A) = 0, no gradients exist in the neighbourhood. So no optic flow can be computed.
- If rank(A) = 1, gradient vectors over all pixels in the neighbourhood are identical. Only normal flow can be computed.

$$\begin{bmatrix} u_n \\ v_n \end{bmatrix} = \frac{-1}{I_x^2 + I_y^2} \begin{bmatrix} I_x I_z \\ I_y I_z \end{bmatrix}$$

• To save computations, avoid computing rank.

$$\operatorname{trace}(A) = A_{11} + A_{22} \approx 0 \implies \operatorname{rank}(A) = 0$$
$$\operatorname{trace}(A) \not\approx 0 \text{ and } \det(A) = A_{11}A_{22} - A_{12}^2 \approx 0 \implies \operatorname{rank}(A) = 1$$

Lucas & Kanade Algorithm

Input: Frames I_1 and I_2 . **Parameters**:

- 1) Noise smoothing scale σ ,
- 2) Gradient smoothing scale ρ ,
- 3) Thresholds τ_{trace} and τ_{det} .
- 1. Compute Gaussian derivatives at noise smoothing scale σ

$$I_x = \frac{\partial G_\sigma}{\partial x} * I_1$$
 and $I_y = \frac{\partial G_\sigma}{\partial y} * I_1$

- 2. Compute temporal derivative $I_z = I_2 I_1$.
- 3. Compute the products

$$I_x^2 \quad I_y^2 \quad I_x I_y \quad I_x I_z \text{ and } I_y I_z$$

4. Smooth the products at gradient smoothing scale ρ

$$G_{\rho} * I_x^2$$
 $G_{\rho} * I_y^2$ $G_{\rho} * I_x I_y$ $G_{\rho} * I_x I_z$ and $G_{\rho} * I_y I_z$
d construct the linear system in (1) at every pixel.

an

Lucas & Kanade Algorithm

5. For every pixel, solve the linear system conditioned on the rank. if $A_{11} + A_{22} < \tau_{trace}$ rank(A)=0 so no flow else if $A_{11}A_{22} - A_{12}^2 < \tau_{det}$ rank(A)=1 so normal flow else rank(A)=2 so complete optic flow

Visualising Displacement Vectors The HSV Color Space

Each color is represented by 3 values

- Hue or shade as an angle from 0° to 360°.
- 2. Saturation or strength of the color
- 3. Value or brightness

Figure: The HSV color space. Taken from http://reilley4color.blogspot.com/ 2016/05/munsell-hue-circle.html.

Visualising Displacement Vectors

Figure: Vector angle represented by hue/shade of color and vector magnitude represented by the saturation/strength of color. HSV color space is useful for such a mapping. $H(x, y) = \theta(x, y)$, $S(x, y) = \sqrt{u(x, y)^2 + v(x, y)^2}$ and V(x, y) = constant.

Lucas & Kanade

Figure: Left to right: frame 1, frame 2, flow classification and false color visualization of optic flow vectors. For flow classification: white = optic flow, gray = normal flow and black = no flow. Integration scale was $\rho = 1$. Author: N. Khan (2015)

Lucas & Kanade

Figure: Left to right: frame 1, frame 2, flow classification and false color visualization of optic flow vectors. For flow classification: white = optic flow, gray = normal flow and black = no flow. Increasing the integration scale ρ to 4 fills up pixels with no flow using values from neighbouring pixels having normal or complete optic flow. Author: N. Khan (2015)

Lucas & Kanade Summary

Advantages

- Simple and fast method.
- Requires only two frames (low memory requirements).
- Good value for money: results often superior to more complicated approaches.

Disadvantages

- Problems at locations where the local constancy assumption is violated: flow discontinuities and non-translatory motion (e.g. rotation).
- Local method that does not compute the flow field at all locations.

Next we study a global method that produces dense flow fields (i.e., at every pixel).

At some given time z the optic flow field is determined as minimising the function (u(x, y), v(x, y))^T of the energy functional

$$E(u,v) = \frac{1}{2} \sum_{x,y} \left(\underbrace{(I_x u + I_y v + I_z)^2}_{\text{data term}} + \alpha \underbrace{(\|\nabla u\|^2 + \|\nabla v\|^2)}_{\text{smoothness term}} \right)$$

- Has a unique solution that depends continuously on the image data.
- ► Global method since optic flow at (x, y) depends on all pixels in both frames.

Notation Alert! u and v are 2D arrays of the same size as the frame but *inside the summation* they are also used to refer to a pixel location.

- \blacktriangleright Regularisation parameter $\alpha > 0$ determines smoothness of the flow field.
 - $\alpha \rightarrow 0$ yields the normal flow.
 - The larger the value of α , the smoother the flow field.
- Dense flow fields due to filling-in effect:
 - At locations, where no reliable flow estimation is possible (small ||∇*I*||), the smoothness term dominates over the data term.
- This propagates data from the neighbourhood.
- No additional threshold parameters necessary.

Functionals and Calculus of Variations

- Since u is a function, E(u, v) is a function of a function. A function of a function is also called a *functional*.
- ► Normal calculus can optimize functions f(x) by requiring $\frac{d}{dx}f|_{x^*} = 0.$
- Functionals are optimized via calculus of variations.
- Optimizer of an energy functional

$$\mathsf{E}(u,v) = \sum_{x,y} \mathsf{F}(x,y,u,v,u_x,u_y,v_x,v_y)$$

must satisfy the so-called *Euler-Lagrange* equations

$$\partial_x F_{u_x} + \partial_y F_{u_y} - F_u = 0$$

$$\partial_x F_{v_x} + \partial_y F_{v_y} - F_v = 0$$

with some boundary conditions.

Functionals and Calculus of Variations

For our energy functional E(u, v),

$$F = \frac{1}{2} \left(I_x u + I_y v + I_z \right)^2 + \frac{\alpha}{2} \left(u_x^2 + u_y^2 + v_x^2 + v_y^2 \right)$$

with partial derivatives

$$F_{u} = I_{x} (I_{x}u + I_{y}v + I_{z})$$

$$F_{v} = I_{y} (I_{x}u + I_{y}v + I_{z})$$

$$F_{u_{x}} = \alpha u_{x}$$

$$F_{u_{y}} = \alpha u_{y}$$

$$F_{v_{x}} = \alpha v_{x}$$

$$F_{v_{y}} = \alpha v_{y}$$

So the Euler-Lagrange equations can be written as

$$\alpha(u_{xx} + u_{yy}) - l_x (l_x u + l_y v + l_z) = 0$$

$$\alpha(v_{xx} + v_{yy}) - l_y (l_x u + l_y v + l_z) = 0$$

At the *i*th pixel, after writing out the first and second order derivatives, we obtain

$$\frac{\alpha}{h^2} \sum_{j \in \mathcal{N}_i} (u_j - u_i) - I_{xi} (I_{xi}u_i + I_{yi}v_i + I_{zi}) = 0$$
$$\frac{\alpha}{h^2} \sum_{j \in \mathcal{N}_i} (v_j - v_i) - I_{yi} (I_{xi}u_i + I_{yi}v_i + I_{zi}) = 0$$

where h is the grid size (usually 1).

Two equations for every pixel.

- \blacktriangleright For all pixels, this can be written as a sparse but very large linear system $B\mathbf{x}=\mathbf{d}.$
 - ► Size of **B** will be 69GB for a 256 × 256 image!
- Large, sparse linear systems can be solved efficiently by Jacobi's iterative method.
 - 1. Let $\mathbf{B} = \mathbf{D} \mathbf{N}$ with a diagonal matrix \mathbf{D} and a remainder \mathbf{N} .
 - 2. Then the problem Dx = Nx + d is solved iteratively using

$$\mathbf{x}^{(k+1)} = \mathbf{D}^{-1}(\mathbf{N}\mathbf{x}^{(k)} + \mathbf{d})$$

1 matrix-vector product, 1 vector addition, 1 vector scaling per iteration.

> All of the above boils down to a very simple iterative scheme

$$u_{i}^{(k+1)} = \frac{\frac{\alpha}{h^{2}} \sum_{j \in \mathcal{N}_{i}} u_{j}^{(k)} - I_{xi} \left(I_{yi} v_{i}^{(k)} + I_{zi} \right)}{\frac{\alpha}{h^{2}} |\mathcal{N}_{i}| + I_{xi}^{2}}$$
$$v_{i}^{(k+1)} = \frac{\frac{\alpha}{h^{2}} \sum_{j \in \mathcal{N}_{i}} v_{j}^{(k)} - I_{yi} \left(I_{xi} u_{i}^{(k)} + I_{zi} \right)}{\frac{\alpha}{h^{2}} |\mathcal{N}_{i}| + I_{xi}^{2}}$$

with k = 0, 1, 2, ... and an arbitrary initialisation (e.g. zero vector).

Figure: Left to right: Dense and smooth optic flow fields obtained via Horn & Schunck's variational method for smoothness parameter $\alpha = 0.0000001, 0.00001$ and 0.001 after 400 iterations. Noise smoothing scale was $\sigma = 0.5$. Author: N. Khan (2018)

Figure: Left to right: Dense and smooth optic flow fields obtained via Horn & Schunck's variational method for smoothness parameter $\alpha = 0.0001, 0.001$ and 0.01 after 400 iterations. Noise smoothing scale was $\sigma = 0.5$. Author: N. Khan (2018)

- Variational methods for computing optic flow are global methods.
- Create dense flow fields by filling-in.
- Model assumptions of the variational Horn and Schunck approach:
 - 1. grey value constancy,
 - 2. smoothness of the flow field
- Mathematically well-founded method.
- Minimising the energy functional leads to coupled differential equations.
- Discretisation creates a large, sparse linear system of equations that can be solved iteratively, *e.g.*, using the Jacobi method.
- Variational methods can be extended and generalised in numerous ways, with respect to both models and algorithms.