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Probability Theory Elementary rules Independence Density Statistics Bayesian View

Probability Theory

I Uncertainty is a key concept in pattern recognition.
I Uncertainty arises due to

I Noise on measurements.
I Finite size of data sets.

I Uncertainty can be quantified via probability theory.
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Probability

I P(event) is fraction of times event occurs out of total number
of trials.

I P = limN→∞
#successes

N .

P(B = b) = 0.6,P(B = r) = 0.4 p(apple) = p(F = a) =?
p(blue box given that apple was selected) = p(B = b|F = a) =?
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Terminology

I Joint P(X ,Y )

I Marginal P(X )

I Conditional P(X |Y )
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Elementary rules of probability

Elementary rules of probability
I Sum rule: p(X ) =

∑
Y p(X ,Y )

I Product rule: p(X ,Y ) = p(Y |X )p(X )

These two simple rules form the basis of all the probabilistic
machinery that will be used in this course.
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I The sum and product rules can be combined to write

p(X ) =
∑
Y

p(X |Y )p(Y )

I A fancy name for this is Theorem of Total Probability.
I Since p(X ,Y ) = p(Y ,X ), we can use the product rule to

write another very simple rule

p(Y |X ) =
p(X |Y )p(Y )

p(X )

I Fancy name is Bayes’ Theorem.
I Plays a central role in machine learning.
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Terminology

I If you don’t know which fruit was selected, and I ask you
which box was selected, what will your answer be?

I The box with greater probability of being selected.
I Blue box because P(B = b) = 0.6.
I This probability is called the prior probability.
I Prior because the data has not been observed yet.
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Terminology

I Which box was chosen given that the selected fruit was
orange?

I The box with greater p(B|F = o) (via Bayes’ theorem).
I Red box
I This is called the posterior probability.
I Posterior because the data has been observed.
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Independence

I If joint p(X = x ,Y = y) equals the product of marginals
p(X = x)p(Y = y) for all values x and y , then random
variables X and Y are independent.

I Independence ↔ p(X ,Y ) factors into p(X )p(Y ).
I Using the product rule, for independent X and Y ,

p(Y |X ) = p(Y ).
I Intuitively, if Y is independent of X , then knowing X does not

change the chances of Y .
I Example: if fraction of apples and oranges is same in both

boxes, then knowing which box was selected does not change
the chance of selecting an apple.
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Probability density

I So far, our set of events was discrete.
I Probability can also be defined for continuous variables via

Prob(x ∈ (a, b)) =

∫ b

a
p(x)dx

I Probability density function p(x)
I is always non-negative, and
I integrates to 1.

I Caution: Probability density is not the same as probability.
Density can be greater than 1.
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Probability density

I Sum rule: p(x) =
∫
p(x , y)dy .

I Product rule: p(x , y) = p(y |x)p(x)
I Probability density can also be defined for a multivariate

random variable x = (x1, . . . , xD).

p(x) ≥ 0∫
x
p(x)dx =

∫
xD

. . .

∫
x1

p(x1, . . . , xD)dx1 . . . dxD = 1
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Expectation

I Expectation is a weighted average of a function.
I Weights are given by p(x).

E [f ] =
∑
x

p(x)f (x) ←− For discrete x

E [f ] =

∫
x
p(x)f (x)dx ←− For continuous x

I When data is finite, expectation ≈ ordinary average.
Approximation becomes exact as N →∞ (Law of large
numbers).
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Expectation

I Expectation of a function of several variables

Ex [f (x , y)] =
∑
x

p(x)f (x , y) (function of y)

I Conditional expectation

Ex [f |y ] =
∑
x

p(x |y)f (x)
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Variance

Measures variability of a random variable around its mean.

var [f ] = E
[
(f (x)− E [f (x)])2

]
= E

[
(f (x)2

]
− E

[
f (x2)

]
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Covariance
Univariate

I For 2 univariate random variables, covariance expresses how
much x and y vary together.

cov [x , y ] = Ex ,y [{x − E [x ]}{y − E [y ]}]
= Ex ,y [xy ]− E [x ]E [y ]

I For independent random variables x and y , cov [x , y ] = 0.
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Covariance
Multivariate

I For multivariate random variables x ∈ RD and y ∈ RK ,
cov [x, y] is a D × K matrix.

I Expresses how each element of x varies with each element of y.

cov [x, y] = Ex,y

[
{x− E [x]}{y − E [y]}T

]
= Ex,y

[
xyT

]
− E [x]E [y]T

=


cov [x1, y1] cov [x1, y2] · · · cov [x1, yK ]
cov [x2, y1] cov [x2, y2] · · · cov [x2, yK ]

...
...

. . .
...

cov [xD , y1] cov [xD , y2] · · · cov [xD , yK ]


(1)
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Covariance
Multivariate

I Covariance of multivariate x with itself can be written as
cov [x] ≡ cov [x, x].

I cov [x] expresses how each element of x varies with every other
element.

cov [x] =


var [x1] cov [x1, x2] · · · cov [x1, xD ]

cov [x2, x1] var [x2] · · · cov [x2, xD ]
...

...
. . .

...
cov [xD , x1] cov [xD , x2] · · · var [xD ]

 (2)
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Bayesian View of Probability

I So far we have considered probability as the frequency of
random, repeatable events.

I What if the events are not repeatable?
I Was the moon once a planet?
I Did the dinosaurs become extinct because of a meteor?
I Will the ice on the North Pole melt by the year 2100?

I For non-repeatable, yet uncertain events, we have the
Bayesian view of probability.
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Bayesian View of Probability

p(w|D) = p(D|w)p(w)

p(D)

I Measures the uncertainty in model w after observing the data
D.

I This uncertainty is measured via conditional p(D|w) and prior
p(w).

I Treated as a function of w, the conditional probability p(D|w)
is also called the likelihood function.

I Expresses how likely the observed data is for any given model
w.
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