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Model Selection

I In our polynomial fitting example, M = 3 gave the best
generalization by controlling the number of free parameters.

I Regularization coefficient λ also achieves a similar effect.
I Parameters such as λ are called hyperparameters.
I They determine the model (model’s complexity).
I Model selection involves finding the best values for parameters

such as M and λ.
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Model Selection

I One approach is to check generalization on a separate
validation set.

I Select model that performs best on validation set.
I One standard technique is called cross-validation.

I Use S−1
S of the available data for training and the rest for

validation.
I Disadvantage: S times more training for 1 parameter. Sk

times more training for k parameters.

Figure: S-fold cross validation for S = 4. Every training is evaluated on
the validation set (in red) and these validation set performance are
averaged over the S training runs.
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Model Selection

I Ideally
I use only training data,
I perform only 1 training run for multiple hyperparameters,
I performance measure that avoids bias due to over-fitting.
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Model Selection

I Choose model for which

ln p(D|wML)−M

is maximized.
I This is called Akaike Information Criterion (AIC).
I The best method is the Bayesian approach which

penalises model complexity in a natural, principled way.
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Curse of Dimensionality

I Our polynomial curve fitting example was for a single variable
x .

I When number of variables increases, the number of parameters
increases exponentially.

Figure: Curse of Dimensionality: The number of regions of a regular grid
grows exponentially with with the dimensionality D of the search space.
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Calculus of Variations
Calculus of Real Numbers

I Considers real-valued functions f (x): mappings from a real
number x to another real number.

I If f has a minimum in ξ, then ξ necessarily satisfies f ′(ξ) = 0.
I If f is strictly convex, then ξ is the unique minimum.

Nazar Khan Machine Learning



Model Selection Curse of Dimensionality Calculus of Variations Lagrange Multipliers

Calculus of Variations
Calculus of Variations

I Considers real-valued functionals E (u): mappings from a
function u(x) to a real number

I If E is minimised by a function v , then v necessarily satisfies
the corresponding Euler-Lagrange equation, a differential
equation in v .

I If E is strictly convex, then v is the unique minimiser.
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Calculus of Variations
Euler-Lagrange Equation in 1-D

A smooth function u(x), x ∈ [a, b] that minimises the functional

E (u) =

∫ b

a
F (x , u, u′)dx

necessarily satisfies the Euler-Lagrange equation

Fu −
d

dx
Fu′ = 0

with so-called natural boundary conditions

Fu′ = 0

in x = a and x = b.
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Calculus of Variations
Euler-Lagrange Equation in 2-D

E (u) =

∫
Ω
F (x , y , u, ux , uy )dxdy

yields the Euler-Lagrange equation

Fu −
d

dx
Fux −

d

dy
Fuy = 0

with the natural boundary condition

nT

(
Fux
Fuy

)
= 0

on the rectangular boundary ∂Ω with normal vector n.
Extensions to higher dimensions are analogous.
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Calculus of Variations
Euler-Lagrange Equations for Vector-Valued Functions

E (u, v) =

∫ b

a
F (x , u, v , u′, v ′)dx

creates a set of Euler-Lagrange equations:

Fu −
d

dx
Fu′ = 0

Fv −
d

dx
Fv ′ = 0

with natural boundary conditions for u and v .
Extensions to vector-valued functions with more components are
straightforward.
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Lagrange Multipliers

I Sometimes we need to optimise a function with respect to
some constraints.

I Minimise f (x) subject to x > 0.
I Maximise f (x) subject to g(x) = 0.

I The method of Lagrange Multipliers is an elegant way of
optimising functions subject to some constraints.

I The point x for which ∇f (x) = 0 is called the stationary
point of f .

I Method of Lagrange multipliers finds the stationary points of a
function subject to one or more constraints.
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Lagrange Multipliers

I For a D dimensional vector x, g(x) = 0 is a D − 1 dimensional
surface in x-space.

I Let x and x + ε be two nearby points on the surface g(x) = 0.
I Using Taylor’s expansion around x

g(x + ε) ≈ g(x) + εT∇g(x)

=⇒ εT∇g(x) ≈ 0

I In the limit ||ε|| → 0
I ε becomes parallel to the constraint surface g(x) = 0, and
I εT∇g(x) = 0

I Therefore, ∇g(x) must be orthogonal to the surface g(x) = 0.
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Lagrange Multipliers

I For any surface g(x) = 0, the gradient ∇g(x) is orthogonal to
the surface.

I At any maximiser x∗ of f (x) that also satisfies g(x) = 0,
∇f (x) must also be orthogonal to the surface g(x) = 0.

I If ∇f (x) is orthogonal to g(x) = 0 at x∗, then any movement
around x∗ along surface g(x) = 0 is orthogonal to ∇f (x) and
will not increase the value of f .

I The only way to increase value of f at x∗ is to leave the
constraint surface g(x) = 0.
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Lagrange Multipliers

I So, at any maximiser x∗, ∇f and ∇g are parallel (or
anti-parallel) vectors.

I This can be stated mathematically as

∇f + λ∇g = 0

where λ 6= 0 is the so-called Lagrange multiplier.
I This can also be formulated as maximisation of the so-called

Lagrangian function

L(x, λ) = f (x) + λg(x)

with respect to x and λ.
I Note that this maximisation is unconstrained.
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Lagrange Multipliers

At maximiser x∗

0 ≡ ∇L = ∇f (x) + λ∇g(x)

which gives D + 1 equations that the optimal x∗ and λ∗ must
satisfy

∂L

∂x1
= 0

...
∂L

∂xD
= 0

∂L

∂λ
= 0

If only x∗ is required then λ can be eliminated without determining
its value (hence λ is also called an undetermined multiplier.)
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Lagrange Multipliers
Example

Maximise 1− x2
1 − x2

2 subject to the constraint x1 + x2 = 1.
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