CS-567 Machine Learning

Nazar Khan

PUCIT

Lecture 8 Decision theory

Decision Theory

- Probability Theory: Mathematical framework for quantifying uncertainty.
- Decision Theory: Combines with probability theory to make optimal decisions in uncertain scenarios.
- Inference: Determining p(x, t) from training data.
- **Decision**: Find a particular *t*.
- p(x, t) is the most complete description of the data.
 - But a decision still needs to be made.
 - ► This decision is generally very simple after inference.

In this lecture ...

- > Decisions to ensure minimum misclassifications.
- Decisions to ensure minimum loss.
- Decisions with multiple models.
- Generative vs. discriminative vs. discriminant function approaches.
- Decision theory for regression.

Decision Theory Example

- Given X-ray image x, we want to know if the patient has a certain disease or not.
- Let t = 0 correspond to the disease class, denoted by C_1 .
- Let t = 1 correspond to the non-disease class, denoted by C_2 .
- Using Bayes' theorem

$$p(C_k|\mathbf{x}) = rac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$$

- All quantities can be obtained from p(x, t) either via marginalization or conditioning.
- Intuitivley, to minimise chance of error, assign x to class with highest posterior.

- Any decision rule places inputs x into *decision regions*.
- ► If my decision rule places x in region R₁, I will say that x belongs to class C₁.
- ► The probability of x belonging to class C₁ is p(x, C₁). This is the probability of my decision being correct.
- Similarly, the probability of my decision being incorrect is p(x, C₂).

Minimizing Misclassifications

► When one input x has been decided upon

$$\begin{split} p(\text{mistake on } \mathbf{x}) &= p(\mathbf{x} \text{ placed in region 1 and belongs to class 2} \\ & \text{OR} \\ \mathbf{x} \text{ placed in region 2 and belongs to class 1}) \\ &= p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1) \end{split}$$

When all inputs have been decided upon

$$p(\mathsf{mistake}) = \int_{\mathcal{R}_1} p(\mathsf{x}, \mathcal{C}_2) d\mathsf{x} + \int_{\mathcal{R}_2} p(\mathsf{x}, \mathcal{C}_1) d\mathsf{x}$$

Minimizing Misclassifications

- ► Individual p(mistake on x) is minimized when x is placed in the region R_k with the highest p(x, C_k).
- ► Overall p(mistake) is minimized when each x is placed in the region R_k with the highest p(x, C_k).
- ► Highest $p(\mathbf{x}, C_k) \implies$ highest $p(C_k | \mathbf{x}) p(\mathbf{x}) \implies$ highest $p(C_k | \mathbf{x})$.
- ► For K classes also, p(mistake) is minimised by placing each x in the region R_k with highest posterior p(C_k|x). This is known as the Bayesian decision rule.

Minimizing Loss

- Suppose we are classifying plant leaves as poisonous or not.
- Are the following mistakes equal?
 - Poisonous leaf classified as non-poisonous.
 - Non-poisonous leaf classified as poisonous.
- We can assign a loss value to each mistake.

• L_{kj} is the loss incurred by classifying a class k item as class j.

Nazar Khan

- Let \mathcal{R}_j consist of all points assigned to class \mathcal{C}_j .
- ► The loss of assigning a point belonging to class C_k to the class C_j is denoted by L_{kj}.
- Probability of points assigned to class C_j belonging to class C_k can be written as

$$\int_{\mathcal{R}_j} p(\mathbf{x}, \mathcal{C}_k) d\mathbf{x} \text{ Why?}$$

Note that we do not know which class any x belongs to. So we are using the probabilities of belonging to each class.

Minimizing Loss Finding the optimal decision rule

► Expected loss 𝔼[L_{kj}] of assigning points belonging to 𝔅_k to class 𝔅_j can be written as

$$\mathbb{E}[L_{kj}] = \int_{\mathcal{R}_j} L_{kj} p(\mathsf{x}, \mathcal{C}_k) d\mathsf{x} \text{ Why?}$$

 Overall expected loss due to misclassifications can be written as

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x} \text{ Why?}$$

 Expected loss of assigning a new point x to class C_j can be written as

$$\sum_{k} L_{kj} p(\mathbf{x}, \mathcal{C}_k)$$
 Why?

Minimizing Loss Finding the optimal decision rule

- So to minimise the overall expected loss, assign each x to the class C_j for which expected loss ∑_k L_{kj}p(x, C_k) is minimum.
- Since p(x, C_k) ∝ p(C_k|x), this rule is the same as assigning each x to the class C_j for which expected loss ∑_k L_{kj}p(C_k|x) is minimum

Intro

Minimizing Loss Summary

When mistakes are not equally bad, instead of minimising the number of mistakes, it is better to minimize the expected loss.

$$\mathbb{E}[L] = \sum_{k} \sum_{j} L_{kj} p(L_{kj})$$
$$= \sum_{k} \sum_{j} L_{kj} \int_{\mathcal{R}_{j}} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}$$

► To minimise overall expected loss, place each x in the region j for which expected loss E[L_j] is minimum

$$\mathbb{E}[L_j] = \sum_k L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

is minimum.

Reject Option

- ► Classification error is high when p(x, C_k) (or equivalently p(C_k|x)) is comparable for all k.
- Uncertainty because no class is a clear winner.
- Reject option: Avoid making a decision for uncertain scenarios.
- ▶ Do not make a decision for x for which largest $p(C_k|x) \le \theta$.
- Loss matrix can include loss of reject option too.

		Classified as		
	(poisonous	non-poisonous	reject
poisonous	(0	1000	100
non-poisonous		1	0	200 /

3 Approaches for Solving Decision Problems

- **1. Generative**: Infer posterior $p(C_k|\mathbf{x})$
 - either by inferring $p(\mathbf{x}|C_k)$ and $p(\mathbf{x})$ and using Bayes' theorem,
 - or by inferring $p(\mathbf{x}, C_k)$ and marginalizing.
 - ► Called generative because p(x|C_k) and/or p(x, C_k) allow us to generate new x's.
- **2.** Discriminative: Model the posterior $p(C_k|\mathbf{x})$ directly.
 - If decision depends on posterior, then no need to model the joint distribution.
- 3. Discriminant Function: Just learn a discriminant function that maps x directly to a class label.
 - $f(\mathbf{x})=0$ for class C_1 .
 - $f(\mathbf{x})=1$ for class C_2 .
 - No probabilities

Generative Approach

- ► For high dimensional x, estimating p(x|C_k) requires large training set.
- \blacktriangleright p(x) allows outlier detection. Also called novelty detection.
- Estimating p(C_k) is easy just use fraction of training data for each class.

Loss

Discriminant Functions

- > Directly learn the decision boundaries.
- But now we don't have the posterior probabilities.

Benefits of knowing the posteriors $p(C_k|\mathbf{x})$

- If loss matrix changes, decision rule can be trivially revised. Discriminant functions would require retraining.
- Reject option can be used.
- Different models can be combined systematically.

Combining Models

Let's say we have X-ray images x_I and blood-tests x_B and want to classify into disease or not disease.

• Method 1: Form
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_I \\ \mathbf{x}_B \end{bmatrix}$$
 and learn classifier for \mathbf{x} .

- Method 2: Learn $p(C_k|\mathbf{x}_I)$ and $p(C_k|\mathbf{x}_B)$.
 - Assuming conditional independence $p(\mathbf{x}_I, \mathbf{x}_B | C_k) = p(\mathbf{x}_I | C_k) p(\mathbf{x}_B | C_k)$

$$p(\mathcal{C}_{k}|\mathbf{x}_{I}, \mathbf{x}_{B}) \propto p(\mathbf{x}_{I}, \mathbf{x}_{B}|\mathcal{C}_{k})p(\mathcal{C}_{k})$$

$$\propto p(\mathbf{x}_{I}|\mathcal{C}_{k})p(\mathbf{x}_{B}|\mathcal{C}_{k})p(\mathcal{C}_{k})$$

$$\propto \frac{p(\mathcal{C}_{k}|\mathbf{x}_{I})p(\mathcal{C}_{k}|\mathbf{x}_{B})}{p(\mathcal{C}_{k})}$$

- Normalise r.h.s using $\sum_k p(\mathcal{C}_k | \mathbf{x}_I, \mathbf{x}_B)$.
- The conditional independence assumption is also known as the naive Bayes model.

Loss functions for regression

- ► So far we have used decision theory for classification problems.
- Loss functions can also be defined for regression problems.
- ► For example, for the polynomial fitting problem a loss function can be described as $L(t, y(\mathbf{x})) = (y(\mathbf{x}) t)^2$.
- Expected loss can be written as

$$E[L] = \int \int (y(\mathbf{x}) - t)^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

 The minimising polynomial function can be written using calculus of variations as

$$y(\mathbf{x}) = \frac{\int tp(\mathbf{x}, t)dt}{p(\mathbf{x})} = \int tp(t|\mathbf{x})dt = E_t[t|\mathbf{x}]$$

which is the expected value of t given x. Also called the regression function.

For multivariable outputs t, optimal $y(x) = E_t[t|x]$

3 Approaches for Solving Regression Problems

- Similar to the case of classification problems, there are 3 approaches to solve regression problems.
 - 1. Infer $p(\mathbf{x}, t)$, marginalize to get $p(\mathbf{x})$, normalize to get $p(t|\mathbf{x})$ and use it to compute conditional expectation $E_t[t|\mathbf{x}]$.
 - Infer p(t|x) directly and use it to compute conditional expectation E_t[t|x].
 - **3.** Find regression function $y(\mathbf{x})$ directly.
- The relative merits of each approach are similar to those of classification approaches.

Summary

- Decision rule to ensure minimum misclassifications is to assign to class with highest posterior $p(C_k|\mathbf{x})$.
- Decision rule to ensure minimum loss is to assign to class with lowest expected loss.
- Though they are derived mathematically, both are common sense rules.
- Reject option can be used for highly uncertain scenarios.
- ► Multiple models can be combined via Naive Bayes assumption.
- Generative vs. discriminative vs. discriminant function approaches.
- Decision theory for regression problems leads to similar conclusions as classification.