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Information Theory

Information Theory

I Amount of additional information ∝ degree of surprise.
I If a highly unlikely event occurs, you gain a lot of new

information.
I If an almost certain event occurs, you gain not much new

information.
I So information ∝ 1

probability
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Information Theory

Information Theory

I For unrelated events x and y
I Information from both events should equal information from x

plus information from y .
I p(x , y) = p(x)p(y)

I From these two relationships, it can be shown that information
must be given by the logarithm function.

h(x , y) = − log(p(x , y))
= − log(p(x)p(y))
= − log(p(x))− log(p(y))

h(x) = − log(p(x))

where h(x) denotes the information given by x .
I For base 2 log, units of information h(x) are ’bits’.
I For natural log, units of information h(x) are ’nats’ (1

nat= ln 2 bits).
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Information Theory

Information Theory
Entropy

I If information given by random variable x is given by a function
h(x) = − log(p(x)), then expected information from r.v x is

H[x ] = E [h(x)] = −
∑

log(p(x))p(x)

I Also called the entropy of random variable x .
I Entropy is just a fancy name for expected information

contained in a random variable.
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Information Theory

Information Theory
Entropy

I To transmit a r.v x with 8 equally likely states, we need 3 bits
(= log2 8).

I Entropy H[x ] = −
∑ 1

8 log2
1
8 = 3 bits.

I For non-uniform probabilities, entropy is reduced.
I Entropy quantifies order/disorder.
I Entropy is a lower-bound on the number of bits needed to

transmit the state of a random variable.
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Information Theory

Information Theory
Entropy

I For a discrete r.v X with pdf p, entropy is

H[p] = −
∑
i

p(xi ) ln p(xi ) (1)

I Sharply peaked distribution =⇒ low entropy.
I Evenly spread distribution =⇒ high entropy.
I Is the entropy non-negative?
I What is its minimum value?
I When does the minimum value occur?
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Information Theory

Information Theory
Finding the Maximum Entropy Distribution – Discrete Case

I How can we find the discrete distribution p(x) that maximises
the entropy H[p]?

I Since p must add up to 1, this a constrained maximisation
problem.

I The Lagrangian function is

H̃ = −
∑
i

p(xi ) ln p(xi ) + λ

(∑
i

p(xi )− 1

)

I The maximum is given by the stationary point of H̃.
I Why is it the maximum?
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Information Theory

Information Theory
Entropy

I For a continuous r.v X with pdf p, we define differential
entropy as

H[p] = −
∫

p(x) ln p(x)dx

I For multivariate x

H[p] = −
∫

p(x) ln p(x)dx
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Information Theory

Information Theory
Finding the Maximum Entropy Distribution – Discrete Case

I How can we find the continuous distribution p(x) that
maximises the entropy H[p]?

I The maximum entropy discrete distribution was the uniform
distribution.

I The maximum differential entropy continuous distribution is
the Gaussian distribution (Excercise 1.34 in Bishop’s book).
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Information Theory

Information Theory
Entropy

I Differential entropy of the Gaussian is

H[x ] =
1
2
{1+ ln(2πσ2)}

I Proportional to σ2. Entropy increases as more values become
probable.

I Can also be negative (for σ2 < 1
2πe ).
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Information Theory

Information Theory
Conditional Entropy

I Let p(x, y) be a joint distribution.
I Given x, additional information needed to specify y is the

conditional information − ln(p(y|x)).
I So expected conditional information is

H[y|x] = −
∫ ∫

p(y, x) ln p(y|x)dydx

I Also called the conditional entropy of y given x.
I Satisfies H[x, y] = H[y|x] + H[x]. Information needed to

specify x and y equals information for x alone plus additional
information needed to specify y given x.
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Information Theory

Information Theory
Relative entropy

I Let r.v. x have a true distribution p(x) and let our estimate of
this distribution be q(x).

I Average information required to specify x when its information
content is determined using p(x) is given by the entropy

H[p] = −
∫

p(x) ln p(x) (2)

I Average information required to specify x when its information
content is determined using q(x) is given by

H̃[q] = −
∫

p(x) ln q(x) (3)
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Information Theory

Information Theory
Relative entropy

I Average additional information required to specify x when q(x)
is used instead of p(x) is given by
H̃[q]− H[p] =

(
−
∫
p(x) ln q(x)

)
−
(
−
∫
p(x) ln p(x)

)
.

I This is known as the relative entropy, or Kullback-Leibler
(KL) divergence.

KL(p||q) =
(
−
∫

p(x) ln q(x)
)
dx−

(
−
∫

p(x) ln p(x)
)
dx

= −
∫

p(x) ln
{
q(x)
p(x)

}
dx

I KL(p||q) 6= KL(q||p).
I KL(p||q) ≥ 0 with equality for p = q.
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Information Theory

Convex Functions

I A function f (x) is convex if every chord lies on or above the
function.

I Any value of x in the interval a to b can be parameterised as
λa+ (1− λ)b where 0 ≤ λ ≤ 1.

I The corresponding point on the chord can be parameterised as
λf (a) + (1− λ)f (b).

I The corresponding point on the function can be parameterised
as f (λa+ (1− λ)b).
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Information Theory

Convex Functions

I Convexity implies points on chord lie on or above points on
function. That is

f (λa+ (1− λ)b) ≤ λf (a) + (1− λ)f (b)

I Convexity is equivalent to positive second derivative
everywhere.

I If function and chord are equal only for λ = 0 and λ = 1, then
the function is called strictly convex.

I The inverse property (every chord lies on or below the
function) is called concavity.

I If f (x) is convex, then −f (x) will be concave.
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Information Theory

Jensen’s Inequality

I Every convex function f (x) satisfies the so-called Jensen’s
inequality

f

(
M∑
i=1

λixi

)
≤

M∑
i=1

λi f (xi )

where λi ≥ 0 and
∑M

i=1 λi = 1 for any set of points
(x1, . . . , xM).

I Interpreting the λi as probabilities p(xi ), Jensen’s inequality
can be formulated for discrete random variables as

f (E[x ]) ≤ E[f (x)]

I For continuous random variables, Jensen’s inequality becomes

f

(∫
xp(xdx

)
≤
∫

f (x) p(xdx
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Information Theory

KL-divergence

I Using Jensen’s inequality

KL(p||q) = −
∫

p(x) ln
{
q(x)
p(x)

}
︸ ︷︷ ︸

concave

dx ≥ − ln
∫

q(x)dx︸ ︷︷ ︸
=1︸ ︷︷ ︸

=0

where the equality holds only when p(x) = q(x) ∀x (because
− ln x is strictly convex).

I Since KL(p||q) ≥ 0 and KL(p||p) = 0, KL-divergence can be
interpreted as a measure of dissimilarity between
distributions p(x) and q(x).
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Information Theory

Relation between data compression and density estimation

I Optimal compression requires the true density.
I For estimated density, KL-divergence gives average,
additional information required by transmitting via
estimated density instead of true density.
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Information Theory

Density Estimation via KL-divergence

I Suppose we have finite data points x1, . . . , xN drawn from an
unknown distribution p(x).

I We want to approximate p(x) by some parametric distribution
q(x|θ).

I We can do this by finding θ that minimizes KL(p||q). But p
is unknown.

I However, KL(p||q) is an expectation w.r.t p(x) and can be
approximated by the ordinary average for large N (law of large
numbers). So

KL(p||q) = −
∫

p(x) ln
{
q(x|θ)
p(x)

}
dx (4)

≈ 1
N

N∑
n=1

{− ln q(xn|θ) + ln p(x)}
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Information Theory

Density Estimation via KL-divergence

I Minimizing w.r.t θ is equivalent to minimizing∑N
n=1− ln q(xn|θ) which is the negative log-likelihood of

data under q(x|θ).
I So minimizing KL-divergence is equivalent to maximising

likelihood (ML estimation).
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Information Theory

Mutual Information

I Given 2 random variables x and y, can we find how
independent they are?

I If they are independent then p(x, y) = p(x)p(y). So
KL(p(x, y)||p(x)p(y)) = 0.

I Therefore, KL(p(x, y)||p(x)p(y)) is a measure of how
independent x and y are.

I Also called the mutual information I [x, y] between variables
x and y.

I [x, y] = KL(p(x, y)||p(x)p(y)) (5)

= −
∫ ∫

p(x, y) ln
(
p(x)p(y)
p(x, y)

)
dxdy

I I [x, y] ≥ 0 with equality iff x and y are independent.
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Information Theory

Mutual Information

I Using the sum and product rules

I [x, y] = H[x]︸︷︷︸
avg. info. needed

to transmit x

− H[x|y]︸ ︷︷ ︸
avg. info. needed

to transmit x
knowing state of y

= H[y]︸︷︷︸
avg. info. needed

to transmit y

− H[y|x]︸ ︷︷ ︸
avg. info. needed

to transmit y
knowing state of x

I Mutual information captures
I Information about x that is contained in y.
I Information about y that is contained in x.
I Reduction in uncertainty of one variable when the other is

known.
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