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Information Theory

Information Theory

» Amount of additional information oc degree of surprise.

» If a highly unlikely event occurs, you gain a lot of new
information.

» If an almost certain event occurs, you gain not much new
information.

» So information robabilty
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Information Theory

Information Theory

» For unrelated events x and y
» Information from both events should equal information from x
plus information from y.

> p(x,y) = p(x)p(y)
» From these two relationships, it can be shown that information
must be given by the logarithm function.

h(x,y) = —log(p(x, y))
— log(p(x)p(y))
= —log(p(x)) — log(p(¥))
h(x) = —log(p(x))
where h(x) denotes the information given by x.

» For base 2 log, units of information h(x) are 'bits’.

» For natural log, units of information h(x) are 'nats’ (1
nat= In 2 bits).
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Information Theory

Information Theory
Entropy

» |f information given by random variable x is given by a function
h(x) = —log(p(x)), then expected information from r.v x is

Hx] = E[h(x)] = =) _log(p

» Also called the entropy of random variable x.

» Entropy is just a fancy name for expected information
contained in a random variable.

Nazar Khan Machine Learning



Information Theory

Information Theory
Entropy

v

To transmit a r.v x with 8 equally likely states, we need 3 bits
(= log, 8).

Entropy H[x] = — > § log, § = 3 bits.

For non-uniform probabilities, entropy is reduced.

v

v

v

Entropy quantifies order/disorder.

v

Entropy is a lower-bound on the number of bits needed to
transmit the state of a random variable.
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Information Theory

Information Theory
Entropy

» For a discrete r.v X with pdf p, entropy is

Hlpl = = > p(q) In p(x;)

v

v

Evenly spread distribution = high entropy.

v

Is the entropy non-negative?

What is its minimum value?

v

When does the minimum value occur?

v

Sharply peaked distribution = low entropy.
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Information Theory

Information Theory
Finding the Maximum Entropy Distribution — Discrete Case

How can we find the discrete distribution p(x) that maximises
the entropy H[p]?

Since p must add up to 1, this a constrained maximisation
problem.

The Lagrangian function is

A== p(x)Inp(x)+ A (Z p(xi) — 1)

1

The maximum is given by the stationary point of H.

Why is it the maximum?
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Information Theory

Information Theory
Entropy

» For a continuous r.v X with pdf p, we define differential
entropy as

Hipl = [ plx)In p(x)dx

» For multivariate x

H[p] = —/p(X)ln p(x)dx
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Information Theory

Information Theory
Finding the Maximum Entropy Distribution — Discrete Case

» How can we find the continuous distribution p(x) that
maximises the entropy H[p]?

» The maximum entropy discrete distribution was the uniform
distribution.

» The maximum differential entropy continuous distribution is
the Gaussian distribution (Excercise 1.34 in Bishop's book).
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Information Theory

Information Theory
Entropy

» Differential entropy of the Gaussian is
1 2
H[x] = 5{1 + In(2w0°)}

» Proportional to 0. Entropy increases as more values become
probable.

: 2 _ 1
» Can also be negative (for 0= < 7).
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Information Theory

Information Theory
Conditional Entropy

Let p(x,y) be a joint distribution.

Given x, additional information needed to specify y is the
conditional information — In(p(y|x)).

So expected conditional information is

Hlylx] = / / ply, X} In p(y|x)dydx

Also called the conditional entropy of y given x.

Satisfies H[x,y] = H[y|x] + H[x]. Information needed to
specify x and y equals information for x alone plus additional
information needed to specify y given x.
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Information Theory

Information Theory
Relative entropy

» Let r.v. x have a true distribution p(x) and let our estimate of
this distribution be g(x).

» Average information required to specify x when its information
content is determined using p(x) is given by the entropy

Hlpl = [ p()1np(x 2)

» Average information required to specify x when its information
content is determined using g(x) is given by

Mﬂ——/mwm«n 3)
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Information Theory

Information Theory
Relative entropy

» Average additional information required to specify x when g(x)
is used instead of p(x) is given by

Alql — Hlp] = (- [ p(x)Inq(x)) — (— [ p(x)In p(x)).

» This is known as the relative entropy, or Kullback-Leibler
(KL) divergence.

KL(pllq) = <—/p(X)|n q(X)) dx — (—/p(X)ln p(X)) dx
(2o

> KL(pllg) # KL(qllp).
» KL(p||g) > 0 with equality for p = q.
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Information Theory

Convex Functions

v

A function f(x) is convex if every chord lies on or above the
function.

Any value of x in the interval a to b can be parameterised as
Aa+ (1 —X)bwhere 0 <\ < 1.

The corresponding point on the chord can be parameterised as
Af(a) + (1 — N)f(b).

The corresponding point on the function can be parameterised
as f(Aa+ (1 — \)b).

f=)
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Information Theory

Convex Functions

Convexity implies points on chord lie on or above points on
function. That is

f(Aa+ (1 — \)b) < Af(a) + (1 — \)f(b)

Convexity is equivalent to positive second derivative
everywhere.

If function and chord are equal only for A =0 and A = 1, then
the function is called strictly convex.

The inverse property (every chord lies on or below the
function) is called concavity.

If f(x) is convex, then —f(x) will be concave.
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Information Theory

Jensen’s Inequality

» Every convex function f(x) satisfies the so-called Jensen’s

inequality
M M
f <Z )\,-x,-) <) Nf (%)
=1 =1L

where \; > 0 and Z,’\il A;i = 1 for any set of points
(Xl, oo ,XM).

> Interpreting the \; as probabilities p(x;), Jensen's inequality
can be formulated for discrete random variables as

F(E[X]) <E[f(x)]

» For continuous random variables, Jensen's inequality becomes

f < / xp(xdx) < / f (x) p(xdx
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Information Theory

KL-divergence

» Using Jensen's inequality

KL(pl|q) = —/p(x) In {qui} dx > — |n/q(x)dx

p(X
—_——— N—_——
concave =1
N’

where the equality holds only when p(x) = g(x) Vx (because
— In x is strictly convex).

» Since KL(p||q) > 0 and KL(p||p) = 0, KL-divergence can be
interpreted as a measure of dissimilarity between
distributions p(x) and g(x).
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Information Theory

Relation between data compression and density estimation

» Optimal compression requires the true density.

» For estimated density, KL-divergence gives average,
additional information required by transmitting via
estimated density instead of true density.
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Information Theory

Density Estimation via KL-divergence

» Suppose we have finite data points xi,...,xy drawn from an
unknown distribution p(x).

» We want to approximate p(x) by some parametric distribution
9(x(6).

» We can do this by finding 6 that minimizes KL(p||g). But p
is unknown.

» However, KL(p||q) is an expectation w.r.t p(x) and can be
approximated by the ordinary average for large N (law of large
numbers). So

Ke(plla) == [ pin{ 2V} ax @)

1 N
NN > {~1Inq(x4|6) + In p(x)}
n=1
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Information Theory

Density Estimation via KL-divergence

> Minimizing w.r.t @ is equivalent to minimizing
ZnNzl —In g(x,|0@) which is the negative log-likelihood of
data under g(x|6).

» So minimizing KL-divergence is equivalent to maximising
likelihood (ML estimation).
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Information Theory

Mutual Information

Given 2 random variables x and y, can we find how
independent they are?

If they are independent then p(x,y) = p(x)p(y). So
KL(p(x,y)llp(x)p(y)) = O.

Therefore, KL(p(x,y)||p(x)p(y)) is a measure of how
independent x and y are.

Also called the mutual information /[x,y| between variables
x and y.

I[x,y] = KL(p(x,y)|lp(x)p(y)) (5)

] e ()

I[x,y] > 0 with equality iff x and y are independent.
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Information Theory

Mutual Information

> Using the sum and product rules

Ix,yl=  HX| = Hixly]
~—~ ———
avg. info. needed  avg. info. needed
to transmit x to transmit x
knowing state of y
= Hhl - HbiX
—~— ~——
avg. info. needed  avg. info. needed
to transmit y to transmit y

knowing state of x

» Mutual information captures

» Information about x that is contained in y.

» Information about y that is contained in x.

» Reduction in uncertainty of one variable when the other is
known.
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