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Linear Regression

Regression

I The previous topic, density estimation, was an unsupervised
learning problem.

I The goal was to model the distribution p(x) of input variables
x.

I We now turn to supervised learning where we model the
predictive distribution p(t|x).

I We start by studying the problem of regression.
I Predict continuous target variable(s) t given input variables

vector x.
I Given training data {(x1, t1), . . . , (xN , tN)}, learn a function

y(x,w) that maps the inputs to the targets.
I Regression corresponds to finding the optimal parameters w∗.
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Linear Regression

Linear Regression

I The simplest regression model is linear regression.
I Linear in parameters w and linear in inputs x.

y(x,w) = wTx = w0 + w1x1 + · · ·+ wDxD

I Parameter w0 accounts for a fixed offset in the data and is
called the bias parameter.

I Note that for x ∈ RD , w ∈ RD+1.
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Linear Regression

Linear Regression

I Linear models are significantly limited for practical problems –
especially for high dimensional inputs.

I However, they have nice analytical properties and they form
the foundation for more sophisticated machine learning
approaches.
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Linear Regression

Linear Regression

I A more powerful model is linear in parameters w but
non-linear in inputs x.

y(x,w) = wTφ(x) = w0φ0(x) + w1φ1(x) + · · ·+ wMφM(x)

I φ0(x) is usually set to 1 to make w0 the bias parameter.
I Note that now w ∈ RM+1 where M is not necessarily equal to

D.
I The input x-space is non-linearly mapped to φ-space and

learning takes place in this new φ-space.
I While the learning remains linear, the learned mapping is

actually non-linear in x-space.
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Linear Regression

Linear Regression
Probabilistic perspective

I We have already covered linear regression in our polynomial
fitting example.

I As before, we assume that target t is given by a deterministic
function y(x,w) with additive Gaussian noise. That is

t = y(x,w) + ε

where ε ∼ N (0, β−1).
I Therefore, we can write

p(t|x,w, β) = N (t|y(x,w), β−1)
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Linear Regression

Linear Regression
Probabilistic perspective

I Likelihood for i.i.d data {(x1, t1), . . . , (xN , tN)} can be written
as

N∏
n=1

N (tn|wTφ(xn), β−1)

I Log-likelihood becomes

N

2
lnβ − N

2
ln(2π)− β 1

2

N∑
n=1

{tn −wTφ(xn)}2︸ ︷︷ ︸
SSE

I Therefore, maximisation of log-likelihood with respect to w is
equivalent to minimisation of SSE function.
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Linear Regression

Linear Regression
Probabilistic perspective

I Gradient with respect to w is
∑N

n=1{tn −wTφ(xn)}φ(xn)
T .

I Equating gradient to the 0 vector

0 =
N∑

n=1

tnφ(xn)
T −wT

ML

(
N∑

n=1

φ(xn)φ(xn)
T

)
I To convert to a pure matrix-vector notation without

summations, let us define the following N ×M matrix

Φ =


φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)


known as the design matrix.
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Linear Regression

Linear Regression
Probabilistic perspective

I It can be verified that the second term in Equation (1)∑N
n=1 φ(xn)φ(xn)

T = ΦTΦ. (H.W. Verify this.)
I By placing the target values in a vector t = (t1, . . . , tN)

T we
can also write the first term as ΦT t. (H.W. Verify this.)

I Now we can solve for wML as

wML = (ΦTΦ)−1ΦT︸ ︷︷ ︸
Φ†

t (this was your answer to Excercise 1.1)

I The M × N matrix Φ† is known as the Moore-Penrose
pseudo-inverse or simply pseudo-inverse of matrix Φ.

I It is a generalisation of matrix inverse to non-square matrices.
I For a square, invertible matrix Φ, it can be verified that

Φ† = Φ−1. (H.W. Verify this.)
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Linear Regression

Linear Regression
Regularisation

I MAP estimation using a zero-mean Gaussian prior on w leads
to regularised linear regression

wML = (λI +ΦTΦ)−1ΦT t (this was your answer to Excercise 1.2)

where λ is the regularisation coefficient that controls the
trade-off between fitting and regularisation.

I This is also known as regularised least squares.
I Such regularisation is also called weight decay or parameter

shrinkage because it encourages weight/parameter values to
remain close to 0.

I Regularisation allows more complex models to be trained on
small datasets without severe over-fitting.

I However, parameter λ needs to be set appropriately.
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Linear Regression

Linear Regression
Mutivariate targets

I For the case of multivariate target vectors tn ∈ RK , we are
interested in the multivariate mapping y(x,W) = WTΦ(x).

I Column k of the M × K matrix W determines the mapping
from φ(x) to the kth output component.

I Under isotropic Gaussian noise assumption, we can write the
multivariate predictive distribution

p(t|x,W, β) = N (t|y(x,w), β−1I) = N (t|WTΦ(x), β−1I)

I The ML solution for i.i.d. data {xn, tn}Nn=1 can then be
computed as

WML = Φ†T

where T =

tT1
...

tTN

 is the N × K matrix of target vectors.
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