CS-567 Machine Learning

Nazar Khan

PUCIT

Lecture 14 Linear Classification

Classification

- In the previous topic, regression, the goal was to predict continuous target variable(s) t given input variables vector x.
- ▶ In *classification*, the goal is to predict *discrete* target variable(s) *t* given input variables vector x.
- ► Input space is divided into *decision regions*.
- Boundaries between regions are called decision boundaries/surfaces.
- ▶ Training corresponds to finding optimal decision boundaries given training data $\{(x_1, t_1), \dots, (x_N, t_N)\}$.

Classification

- Assign x to 1-of-K discrete classes C_k .
- Most commonly, the classes are distinct. That is, x is assigned to one and only one class.
- Convenient coding schemes for targets t are
 - ▶ 0/1 coding for binary classification.
 - ▶ 1-of-K coding for multi-class classification. Example, for \mathbf{x} belonging to class 3, the $K \times 1$ target vector will be coded as $\mathbf{t} = (0, 0, 1, 0, \dots, 0)^T$.

Linear Classification

- Like regression, the simplest classification model is *linear* classification.
 - ► This means that the decision surfaces are linear functions of \mathbf{x} , for example $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$.
 - ▶ That is, a linear decision surface is a D-1 dimensional hyperplane in D-dimensional space.
- ▶ Data in which classes can be *separated exactly* by *linear decision surfaces* is called *linearly separable*.

Linear Classification

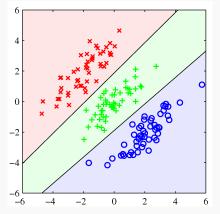


Figure: Linearly separable data and corresponding linear decision boundaries.

3 Approaches for Solving Classification (Decision) Problems

- **1. Generative**: Infer posterior $p(C_k|\mathbf{x})$
 - either by inferring $p(\mathbf{x}|\mathcal{C}_k)$ and $p(\mathbf{x})$ and using Bayes' theorem,
 - or by inferring $p(\mathbf{x}, C_k)$ and marginalizing.
 - ► Called generative because $p(\mathbf{x}|\mathcal{C}_k)$ and/or $p(\mathbf{x}, \mathcal{C}_k)$ allow us to generate new \mathbf{x} 's.
- **2.** Discriminative: Model the posterior $p(C_k|\mathbf{x})$ directly.
 - If decision depends on posterior, then no need to model the joint distribution.
- 3. Discriminant Function: Just learn a discriminant function that maps x directly to a class label.
 - f(x)=0 for class C_1 .
 - $f(\mathbf{x})=1$ for class C_2 .
 - No probabilities

- ► The simplest linear regression model computes continuous outputs $y(x) = \mathbf{w}^T \mathbf{x} + w_0$.
- ▶ By passing these continuous outputs through a non-linear function $f(\cdot)$, we can obtain discrete class labels.

$$y(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + w_0)$$

- ▶ This is known as a generalised linear model and $f(\cdot)$ is known as the activation function.
 - Decision surfaces correspond to all inputs x where y(x) = const. This is equivalent to the condition w^Tx + w₀ = const.
 - ▶ Therefore, decision surfaces are linear functions of the input \mathbf{x} , even if $f(\cdot)$ is non-linear.
- As before, we can replace x by a non-linear transformation $\phi(x)$ and learn non-linear boundaries in x-space by learning linear boundaries in ϕ -space.

Linear Discriminant Functions Two class case

- ▶ The simplest linear discriminant function is given by $y(x) = \mathbf{w}^T \mathbf{x} + w_0$ where \mathbf{w} is called the *weight vector* and w_0 is called the *bias*.
- Classification is performed via the non-linear step

$$class(x) = \begin{cases} C_1 & \text{if } y(x) \ge 0 \\ C_2 & \text{if } y(x) < 0 \end{cases}$$

- ▶ We can view $-w_0$ as a *threshold*.
- ▶ Weight vector w is always orthogonal to the decision surface.
 - Proof: For any two points \mathbf{x}_A and \mathbf{x}_B on the surface, $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0 \Rightarrow \mathbf{w}^T(\mathbf{x}_A \mathbf{x}_B) = 0$. Since vector $\mathbf{x}_A \mathbf{x}_B$ is along the surface, \mathbf{w} must be orthogonal.

y > 0y = 0y < 0 \mathbf{x}_{\perp} $\frac{-w_0}{\|\mathbf{w}\|}$

Figure: Geometry of linear discriminant function in \mathbb{R}^2 .

Linear Discriminant Functions Two class case

- Normal distance of any point x from decision boundary can be computed as $d = \frac{y(x)}{||w||}$.
 - Proof:

$$\mathbf{x} = \mathbf{x}_{\perp} + d \frac{\mathbf{w}}{||\mathbf{w}||}$$

$$\Rightarrow \underbrace{\mathbf{w}^{T} \mathbf{x} + w_{0}}_{y(\mathbf{x})} = \underbrace{\mathbf{w}^{T} \mathbf{x}_{\perp} + w_{0}}_{y(\mathbf{x}_{\perp}) = 0} + d \underbrace{\mathbf{w}^{T} \frac{\mathbf{w}}{||\mathbf{w}||}}_{||\mathbf{w}||}$$

$$\Rightarrow d = \frac{y(\mathbf{x})}{||\mathbf{w}||}$$

▶ Normal distance to boundary from origin (x = 0) is $\frac{w_0}{||w||}$.

Linear Discriminant Functions

 For notational convenience, bias can be included as a component of the weight vector via

$$\tilde{\mathbf{w}} = (w_0, \mathbf{w})$$
 $\tilde{\mathbf{x}} = (1, \mathbf{x})$
 $y(\mathbf{x}) = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$

Linear Discriminant Functions Multiclass case

- ▶ For K class classification with K > 2, we have 3 options
 - **1.** Learn K-1 *one-vs-rest* binary classifiers.
 - 2. Learn K(K-1)/2 one-vs-one binary classifiers for every possible pair of classes. Each point can be classified based on majority vote among the discriminant functions.
 - 3. Learn K discriminant functions y_1, \ldots, y_K and then class(\mathbf{x}) = arg max $_k$ y_k (\mathbf{x}).
- ▶ Options 1 and 2 lead to ambiguous classification regions.

Linear Discriminant Functions *Multiclass Ambiguity*

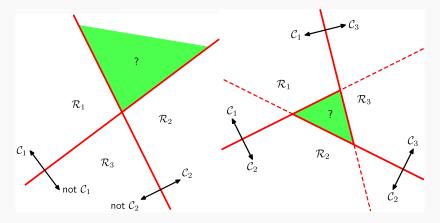


Figure: Ambiguity of multiclass classification using two-class linear discriminant functions.

Linear Discriminant Functions Multiclass case

▶ We can write the *K*-class discriminant function as

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^T \widetilde{\mathbf{x}}$$

► For learning, we can write the error function as

$$E(\widetilde{\mathbf{W}}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}(\mathbf{x}_n) - \mathbf{t}_n||^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} (\widetilde{\mathbf{W}}^T \widetilde{\mathbf{x}}_n - \mathbf{t}_n)^T (\widetilde{\mathbf{W}}^T \widetilde{\mathbf{x}}_n - \mathbf{t}_n)$$

- ▶ The optimal discriminant function parameters can be computed as $\widetilde{\mathbf{W}}^* = \widetilde{\mathbf{X}}^\dagger \mathbf{T}$ where $\widetilde{\mathbf{X}}^\dagger$ is the pseudo-inverse of the design matrix $\widetilde{\mathbf{X}}$ and \mathbf{T} is the matrix of target vectors.
- As before, we can also work in ϕ -space where we will use the corresponding $\tilde{\Phi}$ as the design matrix.

Linear Discriminant Functions Least Squares Solution

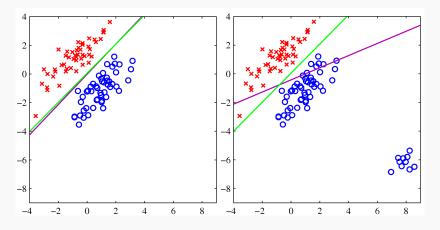


Figure: Least squares solution is sensitive to outliers.

Two class case

- Project all data onto a single vector w.
- Classify by thresholding projected coefficients.
- Optimal vector is one which
 - maximises between-class distance, and
 - minimises within-class distance.

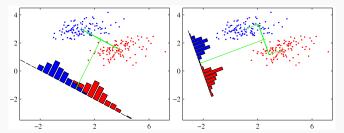


Figure: Fisher's linear discriminant. Classify by thresholding projections onto a vector **w** that maximises inter-class distance and minimises intra-class distances.

Fisher's Linear Discriminant Two class case

- Let $\mathbf{m}_k = \frac{\sum_{n \in \mathcal{C}_k} \mathbf{x}_n}{N_k}$ be the mean vector of points belonging to class \mathcal{C}_k .
- ▶ Projection of this mean is then $m_k = \mathbf{w}^T \mathbf{m}_k$.
- Variance around projected mean can be written as $s_k^2 = \sum_{n \in \mathcal{C}_k} (\mathbf{w}^T \mathbf{x}_n \mathbf{w}^T \mathbf{m}_k)^2$.
- ightharpoonup Suitability of any projection direction $oldsymbol{w}$ can then be written as

$$J(\mathbf{w}) = \frac{\text{Inter-class variance}}{\text{Intra-class variance}}$$

$$= \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

$$= \frac{(\mathbf{w}^T \mathbf{m}_2 - \mathbf{w}^T \mathbf{m}_1)^2}{\sum_{n \in \mathcal{C}_1} (\mathbf{w}^T \mathbf{x}_n - \mathbf{w}^T \mathbf{m}_1)^2 + \sum_{n \in \mathcal{C}_2} (\mathbf{w}^T \mathbf{x}_n - \mathbf{w}^T \mathbf{m}_2)^2}$$

Fisher's Linear Discriminant Two class case

$$\begin{split} J(\mathbf{w}) &= \frac{(\mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1))(\mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1))^T}{\sum_{k=1}^2 \sum_{n \in \mathcal{C}_k} (\mathbf{w}^T (\mathbf{x}_n - \mathbf{m}_k))^2} \\ &= \frac{\mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T \mathbf{w}}{\mathbf{w}^T \left(\sum_{k=1}^2 \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - \mathbf{m}_k)(\mathbf{x}_n - \mathbf{m}_k)^T\right) \mathbf{w}} \\ &= \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \quad (\mathbf{S}_B \text{ and } \mathbf{S}_W \text{ are symmetric due to outer-products}) \end{split}$$

Fisher's Linear Discriminant

Objective J can be maximized by equating gradient to the 0 vector

$$\mathsf{w}^\mathsf{T}\mathsf{S}_B\mathsf{w}(\mathsf{S}_W\mathsf{w})=\mathsf{w}^\mathsf{T}\mathsf{S}_W\mathsf{w}(\mathsf{S}_B\mathsf{w})$$

► Since we only care about the direction of projection, we can drop the scalar factors to get

$$egin{aligned} \mathbf{S}_W \mathbf{w} &= \mathbf{S}_B \mathbf{w} \ \mathbf{S}_W \mathbf{w} &= (\mathbf{m}_2 - \mathbf{m}_1) \underbrace{(\mathbf{m}_2 - \mathbf{m}_1)^T \mathbf{w}}_{ ext{scalar}} \ \mathbf{S}_W \mathbf{w} &\propto (\mathbf{m}_2 - \mathbf{m}_1) \ \mathbf{w} &\propto \mathbf{S}_W^{-1} (\mathbf{m}_2 - \mathbf{m}_1) \end{aligned}$$

Perceptron Algorithm Two-class Classification

- ▶ Target t_n is taken to be either +1 or -1.
- ► A perceptron classifies its input via the non-linear step function

$$y(\phi) = \begin{cases} 1 & \text{if } \mathbf{w}^T \phi_n \ge 0 \\ -1 & \text{if } \mathbf{w}^T \phi_n < 0 \end{cases}$$

- Extremely simplified model of biological neuron.
- ▶ Perceptron criterion: $\mathbf{w}^T \phi_n t_n > 0$ for correctly classified point.
- \blacktriangleright Error can be defined on the set $\mathcal{M}(w)$ of misclassified points.

$$E(\mathbf{w}) = \sum_{n \in \mathcal{M}(\mathbf{w})} -\mathbf{w}^T \phi_n t_n$$

- Optimal w can be learned via gradient descent.
- ► For linearly separable data, perceptron learning is guaranteed to find the decision boundary in finite iterations.

Gradient Descent

- Gradient is the direction (in input space) of maximum rate of increase of a function.
- ► To minimize, move in negative gradient direction.

$$\mathbf{w}^{\mathsf{new}} = \mathbf{w}^{\mathsf{old}} - \eta \nabla_{\mathbf{w}E(\mathbf{w})}$$

- Also known as gradient descent.
- Local versus global minima.
- ightharpoonup Learning rate η should be decayed to avoid osscillation and to converge to a local minimum.
- Different types of gradient descent:
 - ▶ Batch ($\mathbf{w}^{\mathsf{new}} = \mathbf{w}^{\mathsf{old}} \eta \nabla_{\mathbf{w}} E$)
 - ► Sequential $(\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} \eta \nabla_{\mathbf{w}} E_n)$
 - Stochastic (same as sequential but n is chosen randomly).
 - ► Mini-batches ($\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} \eta \nabla_{\mathbf{w}} E_{\mathcal{B}}$)
- Most common variations are stochastic gradient descent (SGD) and SGD using mini-batches.