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Classification

I In the previous topic, regression, the goal was to predict
continuous target variable(s) t given input variables vector x.

I In classification, the goal is to predict discrete target
variable(s) t given input variables vector x.

I Input space is divided into decision regions.
I Boundaries between regions are called decision

boundaries/surfaces.
I Training corresponds to finding optimal decision boundaries

given training data {(x1, t1), . . . , (xN , tN)}.
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Classification

I Assign x to 1-of-K discrete classes Ck .
I Most commonly, the classes are distinct. That is, x is assigned

to one and only one class.
I Convenient coding schemes for targets t are

I 0/1 coding for binary classification.
I 1-of-K coding for multi-class classification. Example, for x

belonging to class 3, the K × 1 target vector will be coded as
t = (0, 0, 1, 0, . . . , 0)T .
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Linear Classification

I Like regression, the simplest classification model is linear
classification.

I This means that the decision surfaces are linear functions of x,
for example y(x,w) = wTx + w0 = 0.

I That is, a linear decision surface is a D − 1 dimensional
hyperplane in D-dimensional space.

I Data in which classes can be separated exactly by linear
decision surfaces is called linearly separable.
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Linear Classification

Figure: Linearly separable data and corresponding linear decision
boundaries.
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3 Approaches for Solving Classification (Decision) Problems

1. Generative: Infer posterior p(Ck |x)
I either by inferring p(x|Ck) and p(x) and using Bayes’ theorem,
I or by inferring p(x, Ck) and marginalizing.
I Called generative because p(x|Ck) and/or p(x, Ck) allow us to

generate new x’s.
2. Discriminative: Model the posterior p(Ck |x) directly.

I If decision depends on posterior, then no need to model the
joint distribution.

3. Discriminant Function: Just learn a discriminant function
that maps x directly to a class label.

I f(x)=0 for class C1.
I f(x)=1 for class C2.
I No probabilities

Nazar Khan Machine Learning



Linear Classification Discriminant Functions Fisher’s Linear Discriminant Perceptron

Linear Classification
Generalized Linear Model

I The simplest linear regression model computes continuous
outputs y(x) = wTx + w0.

I By passing these continuous outputs through a non-linear
function f (·), we can obtain discrete class labels.

y(x) = f (wTx + w0)

I This is known as a generalised linear model and f (·) is known
as the activation function.

I Decision surfaces correspond to all inputs x where
y(x) = const. This is equivalent to the condition
wTx + w0 = const.

I Therefore, decision surfaces are linear functions of the input x,
even if f (·) is non-linear.

I As before, we can replace x by a non-linear transformation
φ(x) and learn non-linear boundaries in x-space by learning
linear boundaries in φ-space.
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Linear Discriminant Functions
Two class case

I The simplest linear discriminant function is given by
y(x) = wTx + w0 where w is called the weight vector and w0
is called the bias.

I Classification is performed via the non-linear step

class(x) =

{
C1 if y(x) ≥ 0
C2 if y(x) < 0

I We can view −w0 as a threshold.
I Weight vector w is always orthogonal to the decision surface.

I Proof: For any two points xA and xB on the surface,
y(xA) = y(xB) = 0⇒ wT (xA − xB) = 0. Since vector xA − xB
is along the surface, w must be orthogonal.
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Linear Discriminant Functions
Two class case

Figure: Geometry of linear discriminant function in R2.
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Linear Discriminant Functions
Two class case

I Normal distance of any point x from decision boundary can be
computed as d = y(x)

||w|| .
I Proof:

x = x⊥ + d
w
||w||

⇒wTx + w0︸ ︷︷ ︸
y(x)

= wTx⊥ + w0︸ ︷︷ ︸
y(x⊥)=0

+d wT w
||w||︸ ︷︷ ︸

||w||

⇒d =
y(x)
||w||

I Normal distance to boundary from origin (x = 0) is w0
||w|| .
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Linear Discriminant Functions

I For notational convenience, bias can be included as a
component of the weight vector via

w̃ = (w0,w)

x̃ = (1, x)

y(x) = w̃T x̃
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Linear Discriminant Functions
Multiclass case

I For K class classification with K > 2, we have 3 options
1. Learn K − 1 one-vs-rest binary classifiers.
2. Learn K (K − 1)/2 one-vs-one binary classifiers for every

possible pair of classes. Each point can be classified based on
majority vote among the discriminant functions.

3. Learn K discriminant functions y1, . . . , yK and then
class(x) = argmaxk yk(x).

I Options 1 and 2 lead to ambiguous classification regions.
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Linear Discriminant Functions
Multiclass Ambiguity

Figure: Ambiguity of multiclass classification using two-class linear
discriminant functions.
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Linear Discriminant Functions
Multiclass case

I We can write the K -class discriminant function as

y(x) = ~WT~x

I For learning, we can write the error function as

E (~W) =
1
2

N∑
n=1

||y(xn)− tn||2

=
1
2

N∑
n=1

(~WT~xn − tn)T (~WT~xn − tn)

I The optimal discriminant function parameters can be
computed as ~W∗ = ~X†T where ~X† is the pseudo-inverse of the
design matrix ~X and T is the matrix of target vectors.

I As before, we can also work in φ-space where we will use the
corresponding Φ̃ as the design matrix.

Nazar Khan Machine Learning



Linear Classification Discriminant Functions Fisher’s Linear Discriminant Perceptron

Linear Discriminant Functions
Least Squares Solution

Figure: Least squares solution is sensitive to outliers.
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Fisher’s Linear Discriminant
Two class case

I Project all data onto a single vector w.
I Classify by thresholding projected coefficents.
I Optimal vector is one which

I maximises between-class distance, and
I minimises within-class distance.

Figure: Fisher’s linear discriminant. Classify by thresholding projections
onto a vector w that maximises inter-class distance and minimises
intra-class distances.
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Fisher’s Linear Discriminant
Two class case

I Let mk =

∑
n∈Ck

xn
Nk

be the mean vector of points belonging to
class Ck .

I Projection of this mean is then mk = wTmk .
I Variance around projected mean can be written as

s2
k =

∑
n∈Ck (w

Txn −wTmk)
2.

I Suitability of any projection direction w can then be written as

J(w) =
Inter-class variance
Intra-class variance

=
(m2 −m1)

2

s2
1 + s2

2

=
(wTm2 −wTm1)

2∑
n∈C1(w

Txn −wTm1)2 +
∑

n∈C2(w
Txn −wTm2)2
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Fisher’s Linear Discriminant
Two class case

J(w) =
(wT (m2 −m1))(wT (m2 −m1))

T∑2
k=1

∑
n∈Ck (w

T (xn −mk))2

=
wT (m2 −m1)(m2 −m1)

Tw

wT
(∑2

k=1
∑

n∈Ck (xn −mk)(xn −mk)T
)
w

=
wTSBw
wTSWw

(SB and SW are symmetric due to outer-products)

∇wE (w) =
wTSBw∇w(wTSWw)−wTSWw∇w(wTSBw)

(wTSWw)2
(∵ quotient rule)

=
wTSBw(2SWw)−wTSWw(2SBw)

(wTSBw)2
(
∵ ∇v(v

TMv) = (M + MT )v
)
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Fisher’s Linear Discriminant
Two class case

I Objective J can be maximized by equating gradient to the 0
vector

wTSBw(SWw) = wTSWw(SBw)

I Since we only care about the direction of projection, we can
drop the scalar factors to get

SWw = SBw

SWw = (m2 −m1) (m2 −m1)
Tw︸ ︷︷ ︸

scalar

SWw ∝ (m2 −m1)

w ∝ S−1
W (m2 −m1)
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Perceptron Algorithm
Two-class Classification

I Target tn is taken to be either +1 or −1.
I A perceptron classifies its input via the non-linear step function

y(φ) =

{
1 if wTφn ≥ 0
−1 if wTφn < 0

I Extremely simplified model of biological neuron.
I Perceptron criterion: wTφntn > 0 for correctly classified point.
I Error can be defined on the setM(w) of misclassified points.

E (w) =
∑

n∈M(w)

−wTφntn

I Optimal w can be learned via gradient descent.
I For linearly separable data, perceptron learning is guaranteed

to find the decision boundary in finite iterations.
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Gradient Descent

I Gradient is the direction (in input space) of maximum rate of
increase of a function.

I To minimize, move in negative gradient direction.

wnew = wold − η∇wE(w)

I Also known as gradient descent.
I Local versus global minima.
I Learning rate η should be decayed to avoid osscillation and to

converge to a local minimum.
I Different types of gradient descent:

I Batch (wnew = wold − η∇wE )
I Sequential (wnew = wold − η∇wEn)
I Stochastic (same as sequential but n is chosen randomly).
I Mini-batches (wnew = wold − η∇wEB)

I Most common variations are stochastic gradient descent
(SGD) and SGD using mini-batches.
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