### **MA-120** Probability and Statistics

Nazar Khan PUCIT Lecture 11: Probability Distributions -Continuous

# Outline

- 1. Probability Density vs. Probability Mass
- 2. Normal Density -- Queen of densities
- 3. Standard Normal Density
- 4. Standardization
  - z-score = amount of standard deviations away from the mean
- 5. Standard Normal Table
- 6. Normal approximation to discrete densities
  - Continuity correction
  - Normal approximation of Binomial density

## So far we have covered ...

- 1. Random Experiments processes with uncertain outcomes
- 2. Sample Space outcomes of experiments
- 3. Events
- Probability assigns numbers between 0 and 1 to events
- 5. Independence P(ABC...)=P(A)P(B)P(C)...

# So far we have covered ...

- 6. Random Variables assign labels to each outcome
  - X(HHH)=3 if random variable X is the number of heads
  - X(HHH)=0 if random variable X is the number of tails
- 7. Probability **Density** of a random variable



8. Cumulative Probability **Distribution** of a random variable  $- P(X \le t)$ 

### So far we have covered ...

- Discrete random variables set of outputs is real valued, <u>countable</u> set
- Now we study **continuous** random variables
  - set of outputs is real valued, <u>uncountable</u> set
  - we can't count, but we can still measure!

### **CONTINUOUS RANDOM VARIABLES**

### Discrete vs. Continuous

| Discrete R.V.                                                                                                | Continuous R.V.                                                   |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Number of heads in n coin<br>tosses                                                                          | A number from the interval<br>[a,b] where a,b∈R                   |
| Year of birth of all students in this class                                                                  | Exact weight of all students in this class                        |
| Number of phone calls per<br>minute at a telephone<br>exchange                                               | Time between successive<br>phone calls at a telephone<br>exchange |
| Winning time of Olympic 100m<br>races <u>rounded to the nearest</u><br><u>100<sup>th</sup> of a second</u> . | <u>Exact</u> winning time of Olympic<br>100m races                |

# Mass vs. Density

Any function f(x) where  $x \in \mathbb{R}$  with the following two properties:

- 1) f(x)≥0
- $1) \quad \int f(x) dx = 1$

is called a **probability density** function.

Since its total area is 1, we can treat any area under it as a probability. For example,

$$p(a < X < b) = \int_a^b f(x) \, dx$$

Integration of density implies that density is multiplied by volume (area). Therefore, the resulting probability can be treated as **probability mass** as well.

For continuous random variables, probability density ≠ probability. Since volume (area) of any point is 0, probability of a single value is 0. Using calculus as well

$$p(X=a) = \int_a^a f(x) \, dx = 0$$

### Mass vs. Density

For discrete random variables, we can use volume of a single point as 1. Therefore, **probability density = probability mass for discrete random variables**. Some books use probability density for discrete random variables.

> Remember that in the discrete case, density = probability. But in the continuous case, density ≠ probability.



## Standard Normal Density

N(x ; 0,1) is the normal density with mean 0 and standard deviation 1.

Known as the **standard normal density**.



### Standardization

z-score =  $(x-\mu)/\sigma$ 

Tells you how many standard deviations is x away from the mean.

For example, if μ=15, σ=2, then x=11 has a z-score = (11-15)/2 = -4/2 = -2 standard deviations away from the mean.

The transformation  $Z=(X-\mu)/\sigma$  is called **standardization**. If random variable X has mean  $\mu$  and standard deviation  $\sigma$ , then random variable Z will have mean 0 and standard deviation 1.

# Standard Normal Table

Integral of normal density does not have a simple closed-form formula.

- It must be computed numerically.
- Fortunately, such computations are already stored in **normal tables**.

The next 4 slides show the **standard normal table**.

Each entry represents the area under the standard normal curve N(0,1) from 0 to z.



| z   | 0       | 0.01    | 0.02    | 0.03    | 0.04    | 0.05    | 0.06    | 0.07    | 0.08    | 0.09    |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0   | 0       | 0.00399 | 0.00798 | 0.01197 | 0.01595 | 0.01994 | 0.02392 | 0.0279  | 0.03188 | 0.03586 |
| 0.1 | 0.03983 | 0.0438  | 0.04776 | 0.05172 | 0.05567 | 0.05962 | 0.06356 | 0.06749 | 0.07142 | 0.07535 |
| 0.2 | 0.07926 | 0.08317 | 0.08706 | 0.09095 | 0.09483 | 0.09871 | 0.10257 | 0.10642 | 0.11026 | 0.11409 |
| 0.3 | 0.11791 | 0.12172 | 0.12552 | 0.1293  | 0.13307 | 0.13683 | 0.14058 | 0.14431 | 0.14803 | 0.15173 |
| 0.4 | 0.15542 | 0.1591  | 0.16276 | 0.1664  | 0.17003 | 0.17364 | 0.17724 | 0.18082 | 0.18439 | 0.18793 |
| 0.5 | 0.19146 | 0.19497 | 0.19847 | 0.20194 | 0.2054  | 0.20884 | 0.21226 | 0.21566 | 0.21904 | 0.2224  |
| 0.6 | 0.22575 | 0.22907 | 0.23237 | 0.23565 | 0.23891 | 0.24215 | 0.24537 | 0.24857 | 0.25175 | 0.2549  |
| 0.7 | 0.25804 | 0.26115 | 0.26424 | 0.2673  | 0.27035 | 0.27337 | 0.27637 | 0.27935 | 0.2823  | 0.28524 |
| 0.8 | 0.28814 | 0.29103 | 0.29389 | 0.29673 | 0.29955 | 0.30234 | 0.30511 | 0.30785 | 0.31057 | 0.31327 |
| 0.9 | 0.31594 | 0.31859 | 0.32121 | 0.32381 | 0.32639 | 0.32894 | 0.33147 | 0.33398 | 0.33646 | 0.33891 |

z = 0.7+0.02 = 0.72 P(0<x<0.72) = 0.26424

| z   | 0       | 0.01    | 0.02    | 0.03    | 0.04    | 0.05    | 0.06    | 0.07    | 0.08    | 0.09    |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1   | 0.34134 | 0.34375 | 0.34614 | 0.34849 | 0.35083 | 0.35314 | 0.35543 | 0.35769 | 0.35993 | 0.36214 |
| 1.1 | 0.36433 | 0.3665  | 0.36864 | 0.37076 | 0.37286 | 0.37493 | 0.37698 | 0.379   | 0.381   | 0.38298 |
| 1.2 | 0.38493 | 0.38686 | 0.38877 | 0.39065 | 0.39251 | 0.39435 | 0.39617 | 0.39796 | 0.39973 | 0.40147 |
| 1.3 | 0.4032  | 0.4049  | 0.40658 | 0.40824 | 0.40988 | 0.41149 | 0.41308 | 0.41466 | 0.41621 | 0.41774 |
| 1.4 | 0.41924 | 0.42073 | 0.4222  | 0.42364 | 0.42507 | 0.42647 | 0.42785 | 0.42922 | 0.43056 | 0.43189 |
| 1.5 | 0.43319 | 0.43448 | 0.43574 | 0.43699 | 0.43822 | 0.43943 | 0.44062 | 0.44179 | 0.44295 | 0.44408 |
| 1.6 | 0.4452  | 0.4463  | 0.44738 | 0.44845 | 0.4495  | 0.45053 | 0.45154 | 0.45254 | 0.45352 | 0.45449 |
| 1.7 | 0.45543 | 0.45637 | 0.45728 | 0.45818 | 0.45907 | 0.45994 | 0.4608  | 0.46164 | 0.46246 | 0.46327 |
| 1.8 | 0.46407 | 0.46485 | 0.46562 | 0.46638 | 0.46712 | 0.46784 | 0.46856 | 0.46926 | 0.46995 | 0.47062 |
| 1.9 | 0.47128 | 0.47193 | 0.47257 | 0.4732  | 0.47381 | 0.47441 | 0.475   | 0.47558 | 0.47615 | 0.4767  |

| z   | 0       | 0.01    | 0.02    | 0.03    | 0.04    | 0.05    | 0.06    | 0.07    | 0.08    | 0.09    |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2   | 0.47725 | 0.47778 | 0.47831 | 0.47882 | 0.47932 | 0.47982 | 0.4803  | 0.48077 | 0.48124 | 0.48169 |
| 2.1 | 0.48214 | 0.48257 | 0.483   | 0.48341 | 0.48382 | 0.48422 | 0.48461 | 0.485   | 0.48537 | 0.48574 |
| 2.2 | 0.4861  | 0.48645 | 0.48679 | 0.48713 | 0.48745 | 0.48778 | 0.48809 | 0.4884  | 0.4887  | 0.48899 |
| 2.3 | 0.48928 | 0.48956 | 0.48983 | 0.4901  | 0.49036 | 0.49061 | 0.49086 | 0.49111 | 0.49134 | 0.49158 |
| 2.4 | 0.4918  | 0.49202 | 0.49224 | 0.49245 | 0.49266 | 0.49286 | 0.49305 | 0.49324 | 0.49343 | 0.49361 |
| 2.5 | 0.49379 | 0.49396 | 0.49413 | 0.4943  | 0.49446 | 0.49461 | 0.49477 | 0.49492 | 0.49506 | 0.4952  |
| 2.6 | 0.49534 | 0.49547 | 0.4956  | 0.49573 | 0.49585 | 0.49598 | 0.49609 | 0.49621 | 0.49632 | 0.49643 |
| 2.7 | 0.49653 | 0.49664 | 0.49674 | 0.49683 | 0.49693 | 0.49702 | 0.49711 | 0.4972  | 0.49728 | 0.49736 |
| 2.8 | 0.49744 | 0.49752 | 0.4976  | 0.49767 | 0.49774 | 0.49781 | 0.49788 | 0.49795 | 0.49801 | 0.49807 |
| 2.9 | 0.49813 | 0.49819 | 0.49825 | 0.49831 | 0.49836 | 0.49841 | 0.49846 | 0.49851 | 0.49856 | 0.49861 |

| z   | 0       | 0.01    | 0.02    | 0.03    | 0.04    | 0.05    | 0.06    | 0.07    | 0.08    | 0.09    |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 3   | 0.49865 | 0.49869 | 0.49874 | 0.49878 | 0.49882 | 0.49886 | 0.49889 | 0.49893 | 0.49896 | 0.499   |
| 3.1 | 0.49903 | 0.49906 | 0.4991  | 0.49913 | 0.49916 | 0.49918 | 0.49921 | 0.49924 | 0.49926 | 0.49929 |
| 3.2 | 0.49931 | 0.49934 | 0.49936 | 0.49938 | 0.4994  | 0.49942 | 0.49944 | 0.49946 | 0.49948 | 0.4995  |
| 3.3 | 0.49952 | 0.49953 | 0.49955 | 0.49957 | 0.49958 | 0.4996  | 0.49961 | 0.49962 | 0.49964 | 0.49965 |
| 3.4 | 0.49966 | 0.49968 | 0.49969 | 0.4997  | 0.49971 | 0.49972 | 0.49973 | 0.49974 | 0.49975 | 0.49976 |
| 3.5 | 0.49977 | 0.49978 | 0.49978 | 0.49979 | 0.4998  | 0.49981 | 0.49981 | 0.49982 | 0.49983 | 0.49983 |
| 3.6 | 0.49984 | 0.49985 | 0.49985 | 0.49986 | 0.49986 | 0.49987 | 0.49987 | 0.49988 | 0.49988 | 0.49989 |
| 3.7 | 0.49989 | 0.4999  | 0.4999  | 0.4999  | 0.49991 | 0.49991 | 0.49992 | 0.49992 | 0.49992 | 0.49992 |
| 3.8 | 0.49993 | 0.49993 | 0.49993 | 0.49994 | 0.49994 | 0.49994 | 0.49994 | 0.49995 | 0.49995 | 0.49995 |
| 3.9 | 0.49995 | 0.49995 | 0.49996 | 0.49996 | 0.49996 | 0.49996 | 0.49996 | 0.49996 | 0.49997 | 0.49997 |
| 4   | 0.49997 | 0.49997 | 0.49997 | 0.49997 | 0.49997 | 0.49997 | 0.49998 | 0.49998 | 0.49998 | 0.49998 |

### The 68–95–99.7 Rule

In any normal distribution

area between ±1 standard deviations from the mean is 68.27%

area between ±2 standard deviations from the mean is 95.45%

area between ±3 standard deviations from the mean is 99.73%







# Normal Approximation

### **Binomial Approximation**

The normal distribution can be used as an approximation to the binomial distribution, under certain circumstances, namely:

If X ~ B(n, p) and if n is large and/or p is close to ½, then X is approximately N(np, np(1-p))

In some cases, working out a problem using the Normal distribution may be easier than using a Binomial.

### **Poisson Approximation**

The normal distribution can also be used to approximate the Poisson distribution for large values of  $\lambda$  (the mean of the Poisson distribution).

• If  $X \sim Po(\lambda)$  then for large values of  $\lambda$ ,  $X \sim N(\lambda, \lambda)$  approximately.

### Binomial

 What is the probability of 45 to 50 heads in 100 tosses of a coin with p(H)=0.6?

P(45≤X≤50) =

C(100,45) \* .6^45 \* .4^55 +

C(100,46) \* .6^46 \* .4^54 +

C(100,47) \* .6^47 \* .4^53 +

C(100,48) \* .6^48 \* .4^52 +

C(100,49) \* .6^49 \* .4^51 +

C(100,50) \* .6^50 \* .4^50

- 2)  $P(45 \le X \le 60)$  will be even more tedious.
- 3) What is the probability of 6050 to 6070 heads in 10000 tosses of a coin with p(H)=0.6?

C(10000,6050) is not even possible on your calculator.

### **Normal Approximation**

In reality X~Bin(100,0.6)

But using Normal approximation,

X~N(100\*0.6, 100\*0.6\*0.4) = N(60,24)

P(45≤X≤50) = area under N(60,24) curve from 45 to 50.

But since X is actually discrete, we apply a correction for using a continuous approximation.

Since values ≥44.5 are rounded to 45 and values ≤50.5 are rounded to 50, we apply the following **continuity correction** 

#### 1) $P(44.5 \le X \le 50.5)$

- $= P((44.5-60)/sqrt(24) \le Z \le (50.5-60)/sqrt(24))$
- $= P(-3.2639 \le Z \le -1.9392)$
- $= P(1.9392 \le Z \le 3.2639)$
- $= P(0 \le Z \le 3.2639) P(0 \le Z \le 1.9392)$
- = 0.49944 0.47381 = 0.02563
- 2)  $P(44.5 \le X \le 60.5) = P(-3.2639 \le Z \le 0.1021)$
- $= P(0 \le Z \le 3.2639) + P(0 \le Z \le 0.1021)$
- = 0.49944 + 0.03983 = 0.53927
- 3)  $P(6049.5 \le Y \le 6070.5) = P(1.0104 \le Z \le 1.4391)$
- $= P(0 \le Z \le 1.4391) P(0 \le Z \le 1.0104)$
- = 0.42507 0.34375 = 0.08132

#### Working with Normal approximation is much easier. But do not forget the continuity correction.

### SOME SPECIAL CONTINUOUS RANDOM VARIABLES

# **Uniform Random Variable**

• Such a random variable takes values in a bounded interval, say (a, b), with density

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{for } x \in (a,b) \\ 0, & \text{otherwise} \end{cases}$$

- Denoted by X ~ Uniform(a, b).
- Whenever we say "pick a point randomly ...", then the picked point X is a uniform random variable.

### **Exponential Random Variable**

• Takes values in the interval  $[0, \infty)$ , with density  $f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{for } x \in (0,\infty) \\ 0, & \text{otherwise} \end{cases}$ 

- The constant  $\lambda > 0$  is a parameter of the density.
- Denoted by X ~  $Exp(\lambda)$ .



х

# Exponential Random Variable

- Time it takes for a particular window glass to crack (due to some accident).
- Time it takes for a bulb to stop working.
- Time it takes for an electrical circuit to malfunction.
- Time it takes for a radioactive atom to decay.

Time between events

# Application of Exponential Density – Carbon Dating

- The half-life of the unstable Carbon-14 isotope is roughly around 5730 years.
  - if x amount of carbon-14 material is left to decay naturally, after 5730 years x/2 amount will be left.
- Actual life of a Carbon-14 atom is a random variable with exponential density

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{for } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$
  
where  $\lambda$  is the rate-of-decay given by  
 $\lambda = \ln(2)/\text{half life} = \ln(2)/5730 = 0.00012097.$ 

### **Distribution Function**

Let f(x) be **any** density function (non-negative, total area 1).

Let's define a new function

$$F(t) = P(X \le t) = \int_{-\infty}^{t} f(x) dx$$

F(t) represents the cumulative probability P(X $\leq$ t) for t $\in \mathbb{R}$ .

Known as the **cumulative distribution function** or just **distribution function**.

Notice that by definition  $\frac{d}{dt}F(t) = f(t)$ 

### **Properties Of A Distribution Function**

- A distribution function, F, always has the following properties
  - 1. F(t) is a non-decreasing function of t,

2. 
$$F(-∞) = 0, F(∞) = 1,$$

- 3. F(t) is right continuous for all  $t \in \mathbb{R}$ .
- F(t) is the <u>distribution of a continuous random</u> variable if, in addition, there exists a density f, so that  $\frac{d}{dt}F(t) = f(t)$  for  $t \in \mathbb{R}$ .

### **Continuous R.V Properties**

- Range of continuous R.V is an uncountable set.
- <u>Distribution</u> must obey the **fundamental theorem** for calculus  $F(t) - F(s) = \int_{s}^{t} f(x) dx$
- For any (real ) up ber  $\Re \le a$ ) = F(a) F(a) = 0
  - Let X be a real number chosen randomly between 5 and 10. Find (i) P(6<X<7)? (ii) P(X=7)?</p>

# Deriving a Density

- Suppose we pick a point at random from the interval [3, 14].
  - Sample space is S = [3, 14].
  - X(s)=s i.e., random variable X is the selected point from [3,14]
- Any subinterval of the form X<=t will have length t-3
- For any subinterval A, P(A) = length(A)/length(S) = length(A)/(14-3)
- Therefore, distribution function F(t) of random variable X is

$$F(t) = \mathbb{P}(X \le t) = \begin{cases} 0 & \text{if } t < 3, \\ \frac{t-3}{14-3} & \text{if } t \in [3, 14], \\ 1 & \text{if } t > 14. \end{cases}$$

 By <u>differentiating the distribution function F(t)</u>, we get the **density** function of X

$$f(x) = \begin{cases} \frac{1}{14-3} & \text{if } x \in (3, 14), \\ 0 & \text{otherwise.} \end{cases}$$

# Example

- Recall that a density function
  - is non-negative
  - with total area 1
- Area from 0 to infinity under  $e^{-.01x}$  is given by  $\int_{1}^{\infty} e^{-.01x} dx = \frac{1}{.01} = 100$
- We can define a **density function** *f*(*x*) using this result

$$f(x) = \begin{cases} .01e^{-.01x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

• The distribution function F(t)=

$$F(t) = \begin{cases} \int_{0}^{t} .01e^{-.01x} dx = \frac{e^{-.01x}}{-.01} \Big|_{0}^{t} = 1 - e^{-.01t} , t \ge 0\\ 0, t < 0 \end{cases}$$

# Lifespan of Car Windshields

- It has been empirically observed that the time X it takes for a windshield to develop a crack has density  $f(x) = \begin{cases} .01e^{-.01x} , x \ge 0 \\ 0 , x < 0 \end{cases}$  where X is measured in years.
- The probability that a new windshield will crack within t years is  $P(X \le t) = F(t) = 1 e^{-.01t}$
- Therefore

 $P(X \le 6 \text{ months}) = F(.5) = 1 - e^{-.01(.5)} = 0.00499$  $P(X \le 100 \text{ years}) = F(100) = 1 - e^{-.01(.5)} = 0.63212$ 

### **Other Continuous Random Variables**

- Gamma
- Chi-square
- Beta
- Cauchy
- Lognormal
- Logistic