MA-120 Probability and Statistics

Nazar Khan PUCIT
Lecture 7: Methods for Computing Probabilities

Methods for Computing Probabilities

1. By Counting Elements
2. By Measuring Sizes

Probabilities via Counting

Elements

Simple Sample Space
A finite sample space $S=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ in which every outcome ω_{i} is equally
likely

- $P\left(\left\{\omega_{i}\right\}\right)=1 / n$
- $p_{1}+p_{2}+\ldots+p_{n}=1$
$P(A)=(\#$ elements in $A) /(\#$ elements in S)

$$
=|A| /|S|
$$

Probabilities via Counting Elements

- For a simple sample space in which the elements can be counted, probabilities can be computed via counting.

Probabilities via Counting Elements

- Experiment: Tossing 4 coins
- $S=? \quad|S|=16$
- If \mathbf{S} is a simple sample space, then every outcome is equally likely: $P\left(\omega_{i}\right)=1 / 16$
- $\mathrm{A}=$ getting 3 heads $=\{\mathrm{HHHT}, \mathrm{HHTH}$, HTHH, THHH $\}$
- P(HHHT \cup HHTH \cup HTHH \cup THHH)
$=\mathrm{P}(\mathrm{HHHT})+\mathrm{P}(\mathrm{HHTH})+\mathrm{P}(\mathrm{HTHH})+$ P(THHH)
$=1 / 16+1 / 16+1 / 16+1 / 16$
$=4 / 16=|\mathrm{A}| /|\mathrm{S}|$

Probabilities via Counting Elements

If \mathbf{S} is not a simple sample space, then every outcome is not equally likely
$-P\left(\omega_{i}\right) \neq P\left(\omega_{j}\right)$
$-P(A) \neq|A| /|S|$

- Experiment: Roll a fair die twice and note the sum of outcomes.
- Define the sample space?
- $S_{1}=\{2,3,4,5,6,7,8,9,10,11,12\}$
- Let P_{1} be the probability measure for events in S_{1}.
- What is $P_{1}(\{3\})$?

Consider another sample space

$$
\mathrm{S}_{2}=\left\{\begin{array}{l}
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6) \\
(2,1)(2,2)(2,3)(2,4)(2,5)(2,6) \\
(3,1)(3,2)(3,3)(3,4)(3,5)(3,6) \\
(4,1)(4,2)(4,3)(4,4)(4,5)(4,6) \\
(5,1)(5,2)(5,3)(5,4)(5,5)(5,6) \\
(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
\end{array}\right\}
$$

Entry (i, j) in S_{2} corresponds to the event
$\{$ i on die 1, j on die 2$\}$.

- When will S_{2} be a simple sample space?
- Assuming fair dice, all combinations $\{i, j\}$ are equally likely and S_{2} is a simple sample space.
- So we can compute

$$
\begin{aligned}
& P_{1}(\{3\})= \\
& \quad P_{2}(\{1,2\})+P_{2}(\{2,1\}) \\
& \quad=1 / 36+1 / 36=2 / 36=1 / 18
\end{aligned}
$$

- Probability space $\left(\mathrm{S}_{2}, \mathrm{P}_{2}\right)$ can be used to answer all questions about the experiment.
- Can we use probability space $\left(S_{1}, P_{1}\right)$ to find the probability of the event $A=\{$ both faces are even\}?

Secretary's Matching Problem

I want to send letters to N different people.

Letters	Envelopes
N	N

I randomly put the N letters into the N envelopes.
What is the probability of the event $A=\{$ at least 1 person gets his letter\}?

- For $\mathrm{N}=2$ letters with 2 envelopes addressed to Kashif and Javed, there are only 2 possibilities, $\mathrm{S}=\{\mathrm{a}, \mathrm{b}\}$ where
- a: Kashif gets Javed's letter and Javed gets Kashif's letter,
- b: Kashif gets Kashif's letter and Javed gets Javed's letter.
- Because of random placement, outcomes a and bare equally likely. $P(A)=P(\{b\})=1 / 2$.
- Find $P(A)$ when $N=4$.

Some Crucial Tricks

- Counting elements can be difficult. So let's consider some tricks for counting elements.
- The multiplication principle
- "If a task is completed in stages (say 2 stages), so that the first stage can be completed in m ways and the second stage can be completed in n ways then the whole task can be completed in mn ways"

A fair die is rolled 3 times. Find the probability that all 3 outcomes will be difficult.

- $\mathrm{S}=\{$ diel outcome \times die 2 outcome x die 3 outcome\}
- $|S|=6 * 6 * 6=216$
- $A=\{$ all 3 outcomes are different $\}$
- $|A|=6 * 5 * 4=120$
- $P(A)=|A| /|S|=120 / 216=0.5555$

There are n people in a room, from which we need to select 3 people, one of which will serve as the president, another as the secretary and the third as the treasurer. How many ways can we make such a selection?

- President can be chosen from n people.
- That leaves n-1 people from which the secretary can be chosen.
- And finally the treasurer can be chosen from the remaining n-2 people.
- So, total number of ways that the 3 people can be chosen from n people is $n^{*}(n-1) *(n-2)$.

Permutations

- More generally, k items can be chosen from n items in $n *(n-1) *(n-$ $2)^{*} . . *(n-k-1)$ ways.
- $n *(n-1) *(n-2) * \ldots *(n-k-1)=n!/(n-k)!$
- This is known as the Permutations Formula $\mathbf{P (n , k) = n ! / ~}$ ($n-k$)!
- It gives the number of ways that k items can be chosen in order from n items.

If 3 people are in a room, what is the probability that no two share the same birthday?

- Sample space S and its size $|S|$
- Event of interest A and its size $|A|$
- $P(A)=|A| /|S|$

Combinations

To count the number of ways that k items can be picked "at the same time" from n items, we use the Combinations Formula

$$
C(n, k)=n!/(k!(n-k)!)
$$

A basket contains 8 apples and 9 oranges all mixed up. We reach in, without looking, draw three items all at once. What is the probability that we will get 2 apples and one orange?

- Describe the sample space S and compute its size |S|.
- Describe the event of interest A and its size.
- $P(A)=$?

Consider a fully shuffled standard deck of 52 playing cards. Find the probability of receiving 2 pairs while randomly drawing a hand of 5 cards.

- Sample space S and its size $|S|$
- Event of interest A and its size $|A|$
- $P(A)=|A| /|S|$
- $|A|=C(13,2) C(4,2) C(4,2) C(44,1)$
- $|S|=C(52,5)$

Probabilities via Measuring

 Sizes- When the sample space
- can not be counted, but
- is bounded
then probabilities can be computed by measuring sizes.
$P(A)=$ length $(A) /$ length(S) $P(A)=\operatorname{area}(A) / \operatorname{area}(S)$ $P(A)=$ volume $(A) /$ volume (S)

Consider the sample space of points within a circle of radius 3 centered at the origin.

$$
S=\left\{(x, y): x^{2}+y^{2} \leq 3^{2}\right\}
$$

- Can you count the number of points in S? - No
- Let the event $A=\{x$ coordinate is $>=0\}$.
- A is represented by the blue area.
- S is the whole area of the circle.
- $P(A)=\operatorname{area}(A) / \operatorname{area}(S)=1 / 2$

We randomly chose a point between $[0,5]$. What is the probability that it lies between 2 and 3.5?

Find the probability that a point chosen at random from within the circle of radius r lies in the blue square with side lengths 2.
$S=\{$ all points in circle of radius r \} $A=\{$ all points in the blue 2×2 square $\}$

$$
P(A)=?
$$

A dart is randomly thrown at the region $S=\left\{(x, y): y \leq x^{2}, 0<x<4\right\}$ and the x-coordinate of landed spot is noted. What is the chance that the x-coordinate will lie in the interval [3,4]?

Problem of Galileo: Italian gamblers were puzzled as to why a sum of 10 on three rolls of a fair die seemed to occur more often than a sum of 9. Galileo wrote down the sample space and took away the mystery. Explain the mystery.

