# MA-120 Probability and Statistics 

Nazar Khan
PUCIT
Lecture 8: Statistical Independence

## Independence

- Terminology:
- Joint probability $\mathbf{P}(\mathbf{A}, \mathbf{B})$ : probability of some events occurring together.
- Marginal probability $P(A)$ : probability of a single event.


## Independence

## Example

Let two dice (red and green) be rolled so that all the 36 possible outcomes are equally likely. Let $A$ be the event that the red die lands 4, and let B be the event that the green die lands 4.

- $\mathrm{S}=$ ?
- Is S simple?
- $|S|=$ ?
- $|A|=$ ?
- $|\mathrm{B}|=$ ?
- $|\mathrm{A} \cap \mathrm{B}|=$ ?


## Independence

$P(A)=6 / 36$
$P(B)=6 / 36$
$P(A) P(B)=6 / 36 * 6 / 36=1 / 36$
$P(A \cap B)=1 / 36=P(A) P(B)$.

- Clearly, $A$ and $B$ are independent events. What we get on the red die has no influence on what we get on the green die.
- For independent events the joint probability equals the product of marginal probabilities.
- Conversely, when $P(A \cap B)=P(A) P(B)$, events $A$ and $B$ must be independent.


## Independence

- There are 2 ways to look at the independence concept.
- Intuitive
- Probabilistic
- Intuitively, two events are independent if they do not influence or block the occurrence of each other.
- Probabilistically, two events are independent if joint probability equals the product of marginal probabilities.


## Independence

## Example

Let a point be selected at random from a square, $[0,4] \times[0,4]$.
Let A be the event that the selected point
lies in the rectangle $[1,3] \times[0,4]$.
Let $B$ be the event that the selected point lies in the rectangle $[0,4] \times[1,3]$.


Are $A$ and $B$ independent?

$$
\mathrm{P}(\mathrm{~A})=\text { ? } \quad \mathrm{P}(\mathrm{~B})=\text { ? } \quad \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\text { ? }
$$

## Independence

## Example

The sample space corresponding to the gender of 3 children of a family is as follows.
$S=\{B B B, B B G, B G B, G B B, B G G, G B G, G G B, G G G\}$.
Assume $S$ is a simple sample space. Let $A$ be the event that the family has both boys and girls, and let B be the event that the family has at most one girl. Are $A$ and $B$ independent events?

## Independence

$A=$ family has both boys and girls $=\{B B G, B G B, G B B, B G G, G B G$, GGB\},
$B=$ family has at most one girl $=\{B B B, B B G, B G B, G B B\}$.
Therefore, $P(A)=6 / 8, P(B)=4 / 8$ and $P(A \cap B)=3 / 8=P(A) P(B)$.
H.W: Check the independence when the family has only 2 children.

## Independence

## Example

Let a card be drawn from a well shuffled deck of 52 cards. Let $A$ be the event that the drawn card is an ace. Let $B$ be the event that the drawn card is a club. Show that $A$ and $B$ are independent events.

## Example

We select a card at random from the standard deck of 52 cards, let A be the event that a face-card is drawn (i.e., a Jack, or Queen or King is drawn). Let $B$ be the event that the drawn card is a club. Show that $A$ and $B$ are independent events.

## Mutual Independence

## Pairwise independence

If $A_{1}, A_{2}, \cdots$ are events, then this sequence is called pairwise independent if every pair of two events is independent.

## Mutual independence

If $A_{1}, A_{2}, \cdots$ are events, then this sequence is called mutually independent if every finite subset of events is independent. That is

$$
P\left(\bigcap_{j \in J} A_{j}\right)=\prod_{j \in J} A_{j}
$$

for every finite subset $J$ of $\{1,2,3, \ldots\}$.

