CS-568 Deep Learning

Nazar Khan

PUCIT

Backpropagation Through Time

RNN Unfolded in Time

Backpropagation Through Time (BPTT)

- In order to train a single hidden layer RNN, we need 5 derivatives:

1. $\nabla_{W^{1}} \mathcal{L} \in \mathbb{R}^{M \times K}$
2. $\nabla_{\mathbf{b}^{1}} \mathcal{L} \in \mathbb{R}^{1 \times K}$
3. $\nabla_{W^{11}} \mathcal{L} \in \mathbb{R}^{M \times M}$
4. $\nabla w_{0} \mathcal{L} \in \mathbb{R}^{D \times M}$
5. $\nabla_{\mathrm{b} \circ} \mathcal{L} \in \mathbb{R}^{1 \times M}$

- They correspond to backpropagation through space as well as time.

Background

- Recall the multivariate chain rule of differentiation

$$
\frac{d f(u(x), v(x))}{d x}=\frac{\partial f}{\partial u} \frac{d u}{d x}+\frac{\partial f}{\partial v} \frac{d v}{d x}
$$

Background

For scalars $x, y \in \mathbb{R}$, vectors $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{y} \in \mathbb{R}^{k}$ and matrices $\mathbf{X}, \mathrm{Y} \in \mathbb{R}^{m \times n}$, we will use the following conventions for writing matrix and vector derivatives.

Scalar w.r.t vector: $\nabla_{\mathbf{x}} y=\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{llll}\frac{\partial y}{\partial x_{1}} & \frac{\partial y}{\partial x_{2}} & \cdots & \frac{\partial y}{\partial x_{d}}\end{array}\right]$
Vector w.r.t scalar: $\nabla_{x} \mathbf{y}=\frac{\partial \mathbf{y}}{\partial x}=\left[\begin{array}{c}\frac{\partial y_{1}}{\partial x} \\ \frac{\partial y_{2}}{\partial x} \\ \vdots \\ \frac{\partial y_{k}}{\partial x}\end{array}\right]$
Vector w.r.t vector: $\nabla_{\mathrm{x}} \mathbf{y}=\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{c}\nabla_{\mathrm{x}} y_{1} \\ \nabla_{\mathrm{x}} y_{2} \\ \vdots \\ \nabla_{\mathrm{x}} y_{k}\end{array}\right]=\underbrace{\left[\begin{array}{cccc}\frac{\partial y_{1}}{} & \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{x_{1}}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{d}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{k}}{\partial x_{1}} & \frac{\partial x_{k}}{\partial x_{2}} & \cdots & \frac{\partial y_{k}}{\partial x_{d}}\end{array}\right]}_{k \times d}$

Background

Matrix and Vector Calculus

Scalar w.r.t matrix: $\nabla \mathbf{x} y=\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{cccc}\frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{m 1}} \\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{m 2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1 n}} & \frac{\partial y}{\partial x_{2 n}} & \cdots & \frac{\partial y}{\partial x_{m n}}\end{array}\right]$

Matrix w.r.t scalar: $\nabla_{x} \mathbf{Y}=\frac{\partial \mathbf{Y}}{\partial x}=\left[\begin{array}{cccc}\frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \cdots & \frac{\partial y_{1 n}}{\partial x} \\ \frac{\partial y y_{12}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \cdots & \frac{y_{2 n}}{\partial x} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{m 1}}{\partial x} & \frac{\partial y_{m 2}}{\partial x} & \cdots & \frac{\partial y_{m n}}{\partial x}\end{array}\right]$

Background

Matrix and Vector Calculus

For vectors $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{d}$ and matrices $\mathrm{M} \in \mathbb{R}^{k \times d}$ and $\mathrm{A} \in \mathbb{R}^{d \times d}$
$-\nabla_{\mathbf{x}}\left(\mathbf{y}^{\top} \mathbf{x}\right)=\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{y}\right)=\mathbf{y}^{\top}$
$-\nabla_{\mathrm{x}}(\mathrm{Mx})=\mathrm{M}$

- $\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A x}\right)=\mathrm{x}^{T}\left(\mathbf{A}^{T}+\mathbf{A}\right)$
- For symmetric $\mathbf{A}, \nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)=2(\mathbf{A} \mathbf{x})^{T}$

Detour

$\nabla_{W} \mathcal{L}(W x)$

- Derivative of scalar loss function $\mathcal{L}(\mathbf{y})$ of vector output $\mathbf{y}=W \mathbf{x}$ w.r.t matrix $W \in \mathbb{R}^{K \times M}$.

$$
\underbrace{\nabla_{W \mathcal{L}} \mathcal{L}}_{M \times K}=\underbrace{\nabla_{\mathbf{y}} \mathcal{L}}_{1 \times K} \underbrace{\nabla_{W \mathbf{y}}}_{K \times(M \times K)}
$$

Multiplication of 1D array with 3D tensor

Detour

$\nabla_{W} \mathcal{L}(W x)$

y_{1}		W_{11}	W_{12}	W_{13}	W_{14}		$x_{1}$$x_{2}$
							x_{3}
$\nabla_{W} y_{1}$	3×4						x_{4}
	$\frac{\partial y_{1}}{\partial W_{11}}$	$\frac{\partial y_{1}}{\partial W_{21}}$	$\frac{\partial y_{1}}{\partial W_{31}}$		x_{1}	0	0
	$\frac{\partial y_{1}}{\partial W_{12}}$	$\frac{\partial y_{1}}{\partial W_{22}}$	$\frac{\partial y_{1}}{\partial W_{32}}$		x_{2}	0	0
	$\frac{\partial y_{1}}{\partial W_{13}}$	$\frac{\partial y_{1}}{\partial W_{23}}$	$\frac{\partial y_{1}}{\partial W_{33}}$		x_{3}	0	0
	$\frac{\partial y_{1}}{\partial W_{14}}$	$\frac{\partial y_{1}}{\partial W_{24}}$	$\frac{\partial y_{1}}{\partial W_{34}}$		x_{4}	0	0

Derivative of vector with respect to matrix

Detour

$\nabla_{W} \mathcal{L}(W x)$

Derivative of vector with respect to matrix

Detour

$\nabla_{W} \mathcal{L}(W x)$

BPTT

Derivative number 1: $\nabla_{W^{1}} \mathcal{L}$

- Notice that W^{1} affects loss \mathcal{L} through $\mathbf{a}^{2(t)}$ at each time t.

$$
\mathcal{L}(\underbrace{\mathrm{a}^{2(1)}\left(W^{1}\right)}_{t=1}, \underbrace{\mathrm{a}^{2(2)}\left(W^{1}\right)}_{t=2}, \ldots, \underbrace{\mathrm{a}^{2(T)}\left(W^{1}\right)}_{t=T})
$$

RNN

Unfolded in time

Influence diagram

BPTT

Derivative number 1: $\nabla_{W^{1}} \mathcal{L}$

$$
\begin{aligned}
& \mathbf{h}^{2(t)}=f\left(\mathbf{a}^{2(t)}\right) \\
& \mathbf{a}^{2(t)}=W^{1} \mathbf{h}^{1(t)}+\mathbf{b}^{1} \\
& \mathbf{h}^{1(t)}=\tanh \left(\mathbf{a}^{1(t)}\right) \\
& \mathbf{a}^{1(t)}=W^{0} \mathbf{h}^{0(t)}+W^{11} \mathbf{h}^{1(t-1)}+\mathbf{b}^{0}
\end{aligned}
$$

- Using the multivariate chain rule over time

$$
\begin{aligned}
\underbrace{\nabla_{W^{1}} \mathcal{L}}_{M \times K} & =\sum_{t=1}^{T} \underbrace{\nabla_{\mathbf{a}^{2(t)}} \mathcal{L}}_{1 \times K} \underbrace{\nabla_{W^{1}} \mathbf{a}^{2(t)}}_{K \times(M \times K)} \\
& =\sum_{t=T}^{1} \underbrace{\mathbf{h}^{1(t)}}_{M \times 1} \underbrace{\nabla_{\mathbf{a}^{2}(t)} \mathcal{L}}_{1 \times K}
\end{aligned}
$$

- Computation of $\nabla_{\mathrm{a}^{2(t)}} \mathcal{L}$ is described next.
- The derivatives of loss \mathcal{L} w.r.t pre-activations $\mathrm{a}^{2(t)}$ can be computed as

$$
\underbrace{\nabla_{\mathbf{a}^{2(t)}} \mathcal{L}}_{1 \times K}=\underbrace{\nabla_{\mathbf{h}^{2}(t)} \mathcal{L}}_{1 \times K} \underbrace{\nabla_{\mathbf{a}^{2(t)}} \boldsymbol{h}^{2(t)}}_{K \times K}=\nabla_{\mathbf{h}^{2(t)}} \mathcal{L}\left[\begin{array}{cccc}
\left.\begin{array}{cccc}
\partial_{a_{1}} h_{1} & \partial_{a_{2}} h_{1} & \ldots & \partial_{a_{K}} h_{1} \\
\partial_{a_{1}} h_{2} & \partial_{a_{2}} h_{2} & \ldots & \partial_{a_{K}} h_{2} \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{a_{1}} h_{K} & \partial_{a_{2}} h_{K} & \ldots & \partial_{a_{K}} h_{K}
\end{array}\right]_{\text {Jacobian matrix }}^{2(t)}
\end{array}\right.
$$

- The Jacobian matrix is the derivative of outputs with respect to inputs.
- In 1D, the term $\frac{d y}{d x}$ is the 1×1 Jacobian matrix of $y=f(x)$.
- Jacobian matrix is
- diagonal for scalar activation functions (logistic sigmoid, tanh, ReLU), and
- dense for vector activation functions (softmax).

BPTT

Derivative number 2: $\nabla_{\mathrm{b}^{1}} \mathcal{L}$

- Following the same reasoning as used for $\nabla_{W^{1}} \mathcal{L}$ above, we can compute

$$
\underbrace{\nabla_{\mathbf{b}^{1}} \mathcal{L}}_{1 \times K}=\sum_{t=T}^{1} \underbrace{\nabla_{\mathbf{a}^{2(t)}} \mathcal{L}}_{1 \times K}
$$

where we have used the fact that $\nabla_{\mathbf{b}^{1}} \mathbf{a}^{2(t)}=I_{K}$.

BPTT

Derivative number 3: $\nabla_{W^{11}} \mathcal{L}$

- Notice that W^{11} affects loss \mathcal{L} through $\mathbf{a}^{1(t)}$ at each time t.

$$
\mathcal{L}(\underbrace{\mathrm{a}^{1(1)}\left(W^{11}\right)}_{t=1}, \underbrace{\mathrm{a}^{1(2)}\left(W^{11}\right)}_{t=2}, \ldots, \underbrace{\mathrm{a}^{1(T)}\left(W^{11}\right)}_{t=T})
$$

BPТT

Derivative number 3: $\nabla_{W_{11}} \mathcal{L}$

$$
\begin{aligned}
& \mathbf{h}^{2(t)}=f\left(\mathbf{a}^{2(t)}\right) \\
& \mathbf{a}^{2(t)}=W^{1} \mathbf{h}^{1(t)}+\mathbf{b}^{1} \\
& \mathbf{h}^{1(t)}=\tanh \left(\mathbf{a}^{1(t)}\right) \\
& \mathbf{a}^{1(t)}=W^{0} \mathbf{h}^{0(t)}+W^{11} \mathbf{h}^{1(t-1)}+\mathbf{b}^{0}
\end{aligned}
$$

- Using the multivariate chain rule over time

$$
\begin{aligned}
\underbrace{\nabla_{W^{11}} \mathcal{L}}_{M \times M} & =\sum_{t=1}^{T} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M} \underbrace{\nabla_{W^{11}} \mathbf{a}^{1(t)}}_{M \times(M \times M)} \\
& =\sum_{t=T}^{1} \underbrace{\mathbf{h}^{1(t-1)}}_{M \times 1} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M}
\end{aligned}
$$

- Computation of $\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}$ is described next.

BPTT

$\nabla_{\mathbf{a}^{(t)}} \mathcal{L}$

- The derivatives of loss \mathcal{L} w.r.t pre-activations $\mathbf{a}^{1(t)}$ can be computed as

$$
\underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M}=\underbrace{\nabla_{\mathbf{h}^{1(t)}} \mathcal{L}}_{1 \times M} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathbf{h}^{1(t)}}_{M \times M}=\nabla_{\mathbf{h}^{1(t)}} \mathcal{L} \underbrace{\left[\begin{array}{cccc}
\partial_{a_{1}} h_{1} & \partial_{a_{2}} h_{1} & \ldots & \partial_{a_{M}} h_{1} \\
\partial_{a_{1}} h_{2} & \partial_{a_{2}} h_{2} & \ldots & \partial_{a_{M}} h_{2} \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{a_{1}} h_{M} & \partial_{a_{2}} h_{M} & \ldots & \partial_{a_{M}} h_{M}
\end{array}\right]^{1(t)}}_{\text {Jacobian matrix }}
$$

- Computation of $\nabla_{\mathbf{h}^{1(t)}} \mathcal{L}$ is described next.

BPTT

$\nabla_{\mathbf{h}^{(t)}} \mathcal{L}$

- Notice that $\mathbf{h}^{1(t)}$ affects loss \mathcal{L}

1. through $\mathbf{a}^{2(t)}$ at each time t, and
2. through $\mathbf{a}^{1(t+1)}$ at each time $t+1$.

RNN

Influence diagram

BPTT

$\nabla_{\mathbf{h}^{(t)}} \mathcal{L}$

$$
\begin{aligned}
& \mathbf{h}^{2(t)}=f\left(\mathbf{a}^{2(t)}\right) \\
& \mathbf{a}^{2(t)}=W^{1} \mathbf{h}^{1(t)}+\mathbf{b}^{1} \\
& \mathbf{h}^{1(t)}=\tanh \left(\mathbf{a}^{1(t)}\right) \\
& \mathbf{a}^{1(t)}=W^{0} \mathbf{h}^{0(t)}+W^{11} \mathbf{h}^{1(t-1)}+\mathbf{b}^{0}
\end{aligned}
$$

- Using the multivariate chain rule over these 2 time steps

$$
\begin{aligned}
\underbrace{\nabla_{\mathbf{h}^{1(t)}} \mathcal{L}}_{1 \times M} & =\nabla_{\mathbf{a}^{2(t)}} \mathcal{L} \nabla_{\mathbf{h}^{1(t)}} \mathbf{a}^{2(t)}+\underbrace{\nabla_{\mathbf{a}^{1(t+1)}} \mathcal{L} \nabla_{\mathbf{h}^{1(t)}} \mathbf{a}^{1(t+1)}}_{\text {Not required when } t=T} \\
& =\underbrace{\nabla_{\mathbf{a}^{2(t)}} \mathcal{L}}_{1 \times K} \underbrace{W^{1}}_{K \times M}+\underbrace{\nabla_{\mathbf{a}^{1(t+1)}} \mathcal{L}}_{1 \times M} \underbrace{W^{11}}_{M \times M}
\end{aligned}
$$

BPTT

Derivative number 4: ∇_{w} o \mathcal{L}

- Notice that W^{0} affects loss \mathcal{L} through $\mathbf{a}^{1(t)}$ at each time t.

$$
\mathcal{L}(\underbrace{\mathbf{a}^{1(1)}\left(W^{0}\right)}_{t=1}, \underbrace{\mathbf{a}^{1(2)}\left(W^{0}\right)}_{t=2}, \ldots, \underbrace{\mathbf{a}^{1(T)}\left(W^{0}\right)}_{t=T})
$$

BPTT

Derivative number 4: $\nabla_{w o} \mathcal{L}$

$$
\begin{aligned}
& \mathbf{h}^{2(t)}=f\left(\mathbf{a}^{2(t)}\right) \\
& \mathbf{a}^{2(t)}=W^{1} \mathbf{h}^{1(t)}+\mathbf{b}^{1} \\
& \mathbf{h}^{1(t)}=\tanh \left(\mathbf{a}^{1(t)}\right) \\
& \mathbf{a}^{1(t)}=W^{0} \mathbf{h}^{0(t)}+W^{11} \mathbf{h}^{1(t-1)}+\mathbf{b}^{0}
\end{aligned}
$$

- Using the multivariate chain rule over time

$$
\begin{aligned}
\underbrace{\nabla_{W^{0}} \mathcal{L}}_{D \times M} & =\sum_{t=1}^{T} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M} \underbrace{\nabla_{W^{0}} \mathbf{a}^{1(t)}}_{M \times(D \times M)} \\
& =\sum_{t=T}^{1} \underbrace{\mathbf{h}^{0(t)}}_{D \times 1} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M}
\end{aligned}
$$

- Following the same reasoning as used for $\nabla_{W^{0}} \mathcal{L}$ above, we can compute

$$
\underbrace{\nabla_{\mathbf{b}^{0}} \mathcal{L}}_{1 \times M}=\sum_{t=T}^{1} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathcal{L}}_{1 \times M}
$$

where we have used the fact that $\nabla_{\mathbf{b}^{0}} \mathbf{a}^{1(t)}=I_{M}$.
Now we have all 5 derivatives required to train an RNN with 1 hidden layer.

Please note that all 5 derivatives will be transposed to obtain the gradients used in gradient descent.

Note about biases

- Notice that, throughout the course, derivative with respect to bias has been the sum of δ-values.
- This was the case for
- Neural Networks
- Convolutional Neural Networks, and now
- Recurrent Neural Networks

Summary

Output layer

$$
\begin{aligned}
\nabla_{\mathbf{a}^{2(t)}} \mathcal{L} & =\nabla_{\mathbf{h}^{2}(t)} \mathcal{L} \underbrace{\nabla_{\mathbf{a}^{2}(t)} \mathbf{h}^{2(t)}}_{\text {Jacobian }} \\
\nabla_{W^{1}} \mathcal{L} & =\sum_{t=T}^{1} \mathbf{h}^{1(t)} \nabla_{\mathbf{a}^{2}(t)} \mathcal{L} \\
\nabla_{\mathbf{b}^{1}} \mathcal{L} & =\sum_{t=T}^{1} \nabla_{\mathbf{a}^{2}(t)} \mathcal{L}
\end{aligned}
$$

Summary

Hidden layer

$$
\begin{aligned}
\nabla_{\mathbf{h}^{1(t)}} \mathcal{L} & =\nabla_{\mathbf{a}^{2(t)}} \mathcal{L} W^{1}+\underbrace{\nabla_{\mathbf{a}^{1(t+1)}} \mathcal{L} W^{11}}_{\text {Not required when } t=T} \\
\nabla_{\mathbf{a}^{1(t)}} \mathcal{L} & =\nabla_{\mathbf{h}^{1(t)}} \mathcal{L} \underbrace{\nabla_{\mathbf{a}^{1(t)}} \mathbf{h}^{1(t)}}_{\text {Jacobian }} \\
\nabla_{W^{11}} \mathcal{L} & =\sum_{t=T}^{1} \mathbf{h}^{1(t-1)} \nabla_{\mathbf{a}^{1(t)}} \mathcal{L} \\
\nabla_{W^{0}} \mathcal{L} & =\sum_{t=T}^{1} \mathbf{h}^{0(t)} \nabla_{\mathbf{a}^{1(t)}} \mathcal{L} \\
\nabla_{\mathbf{b}^{0}} \mathcal{L} & =\sum_{t=T}^{1} \nabla_{\mathbf{a}^{1(t)}} \mathcal{L}
\end{aligned}
$$

