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Backpropagation in CNNs

�
Conv+Subsample

6 filters
Conv+Subsample

12 filters
Flattening

40 × 40 × 3 20 × 20 × 6 10 × 10 × 12 1200 × 1

Fully
connected

MLP

1. Compute δk = ∂L
∂ak

for each neuron in flattened layer using standard MLP
backpropagation.

2. Directly copy these δks at corresponding locations of previous subsampling
layer.
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Backpropagation from subsampling to convolution layer

I Record index of pooled neuron during forward pass.
I Backpropagate δ only to this pooled neuron.

��

SubsampleConvolution

Copy

I Mean-pooling is different.
I All neurons are picked with uniform weight in forward pass.
I So backpropagate δ to each neuron with uniform weight.

1

4
��

SubsampleConvolution

Copy to all 4 neurons
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Backpropagation in a convolutional layer

ConvolutionSubsample
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Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.
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1. Take all neurons affected by neuron j .
2. Compute dot-product between their δ values and connecting weights.
3. Multiply result by derivative of activation function of neuron j .
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Backpropagation in a convolutional layer

I Consider a neuron
in a convolutional
layer.

I In the forward
pass, the blue
neuron affects all
neurons marked by
x in the next layer.

x x x
x xx
x x x

I Notice the flipped
role of weights.

x xx
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Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation in a convolutional layer

I In the backward pass, the blue neuron computes the dot-product between
δ values at the x-locations and connecting weights.

x x x
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x x x
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I The connecting weights are a horizontally and vertically flipped version of
the weights used in the forward convolution pass.
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Backpropagation in a convolutional layer

I The adjacent red neuron affects a new but overlapping set of x-locations
using the same connecting weights.
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I Since the weights are shared, the only difference is between the
x-locations.
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Backpropagation in a convolutional layer
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I Equivalent to convolving the δ-map by flipped weights.
I Therefore, backpropagation of δ values from a convolution layer is

1. just a convolution of the δ-map using flipped weights,
2. followed by multiplication with derivatives of activation functions.
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Backpropagation in a convolutional layer

I What about boundary neurons? Who did they affect?
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I Equivalent to convolving the δ-map by flipped weights using
zero-padding.

I Therefore, backpropagation of δ values from a convolution layer is
1. just a convolution of the δ-map using flipped weights with

zero-padding,
2. followed by multiplication with derivatives of activation functions.
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Computing gradients in convolutional layer

I Consider a valid convolution of an n × n array with another n × n array.
I Size of the result will be 1× 1.

I Now consider a valid convolution of an (n + 1)× (n + 1) array with an
n × n array.
I What will be the size of the result?

I Now consider a valid convolution of an (n + 2)× (n + 2) array with an
n × n array.
I What will be the size of the result?
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Computing gradients in convolutional layer
1D case

I Backpropagation computes the per-neuron δ-maps only.
I Per-weight derivatives are computed as the product of a traditional

neuron’s δ value and its input.
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I Consider 1D convolutional layer with 3× 1 filter.
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∂L

∂w1
= δ10+ δ2x1 + δ3x2 + δ4x3 + δ5x4

∂L

∂w2
= δ1x1 + δ2x2 + δ3x3 + δ4x4 + δ5x5

∂L

∂w3
= δ1x2 + δ2x3 + δ3x4 + δ4x5 + δ50


=⇒

[
δ1 δ2 δ3 δ4 δ5

]
? (valid)[

0 x1 x2 x3 x4 x5 0
]

I Verify that ∂L
∂b =

∑
δi .
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Computing gradients in convolutional layer
2D case

1. Zero-pad the input array with bK2 c zeros on each side1.
2. Perform valid convolution of the zero-padded input array by the δ-map of

the next layer to obtain a K × K array of derivatives of the convolution
weights.

�-map

Zero-padded	input

3. Derivative of bias is just the sum of the δ-map.

1Assuming square K × K convolution filter where K is odd
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Summary

I From FC to Subsampling:
Direct copying of δ-values.

I From Subsampling to Conv:
Direct copy or weighted combination of δ-map.

I From Conv:
conv2d(zeropad(δ-map), fliplr(flipud(F)), ‘valid’)

I Gradients of convolution filter F:
conv2d(zeropad(input array), δ-map, ‘valid’)

I Gradient of bias:
sum of δ-map
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