CS-568 Deep Learning

Nazar Khan

PUCIT

Backpropagation in a CNN

Backpropagation in CNNs

- 1. Compute $\delta_k = \frac{\partial L}{\partial a_k}$ for each neuron in flattened layer using standard MLP backpropagation.
- 2. Directly copy these δ_k s at corresponding locations of previous subsampling layer.

Backpropagation from subsampling to convolution layer

- Record index of pooled neuron during forward pass.
- Backpropagate δ only to this pooled neuron.

Mean-pooling is different.

- All neurons are picked with uniform weight in forward pass.
- So backpropagate δ to each neuron with uniform weight.

Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.

$$\delta_j^{(1)} = h'(a_j) \sum_{k=1}^K \delta_k^{(2)} w_{kj}$$

- **1.** Take all neurons *affected* by neuron j.
- 2. Compute dot-product between their δ values and connecting weights.
- 3. Multiply result by derivative of activation function of neuron j.

- Consider a neuron in a convolutional layer.
- In the forward pass, the blue neuron affects all neurons marked by x in the next layer.

Notice the flipped role of weights.

х

 w_{32}

 w_{31}

 w_{11}

 \blacktriangleright In the backward pass, the blue neuron computes the dot-product between δ values at the x-locations and connecting weights.

х	х	х		
х	x	х		
х	х	х		

δ_{11}					
	δ_{22}	δ_{23}	δ_{24}		
	δ_{32}	δ_{33}	δ_{34}		
	δ_{42}	δ_{43}	δ_{44}		
					δ_{88}

w ₃₃	w_{32}	w_{31}		
w ₂₃	w_{22}	w_{21}		
w_{13}	w_{12}	w_{11}		

The connecting weights are a horizontally and vertically flipped version of the weights used in the forward convolution pass.

The adjacent red neuron affects a new but overlapping set of x-locations using the same connecting weights.

	х	х	х		
	x	x	х		
	x	х	х		

δ_{11}					
	δ_{23}	δ_{24}	δ_{25}		
	δ_{33}	δ_{34}	δ_{35}		
	δ_{43}	δ_{44}	δ_{45}		
					δ_{88}

	w ₃₃	w_{32}	w_{31}		
	w ₂₃	w_{22}	w_{21}		
	w_{13}	w_{12}	w_{11}		

Since the weights are shared, the only difference is between the x-locations.

Equivalent to convolving the δ -map by flipped weights.

- \blacktriangleright Therefore, backpropagation of δ values from a convolution layer is
 - 1. just a convolution of the δ -map using flipped weights,
 - 2. followed by multiplication with derivatives of activation functions.

▶ What about boundary neurons? Who did they affect?

- Equivalent to convolving the δ-map by flipped weights using zero-padding.
- \blacktriangleright Therefore, backpropagation of δ values from a convolution layer is
 - 1. just a convolution of the $\delta\text{-map}$ using flipped weights with zero-padding,
 - 2. followed by multiplication with derivatives of activation functions.

Computing gradients in convolutional layer

- Consider a *valid* convolution of an n × n array with another n × n array.
 Size of the result will be 1 × 1.
- Now consider a *valid* convolution of an (n + 1) × (n + 1) array with an n × n array.
 - What will be the size of the result?
- Now consider a valid convolution of an (n+2) × (n+2) array with an n × n array.
 - What will be the size of the result?

Computing gradients in convolutional layer $1D \ case$

- Backpropagation computes the per-neuron δ -maps only.
- Per-weight derivatives are computed as the product of a *traditional* neuron's δ value and its input.

• Consider 1D convolutional layer with 3×1 filter.

$$\begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{2} & \delta_{4} & \delta_{5} \end{bmatrix}$$

Computing gradients in convolutional layer 2D case

- 1. Zero-pad the input array with $\lfloor \frac{K}{2} \rfloor$ zeros on each side¹.
- 2. Perform valid convolution of the zero-padded input array by the δ -map of the next layer to obtain a $K \times K$ array of derivatives of the convolution weights.

3. Derivative of bias is just the sum of the δ -map.

¹Assuming square $K \times K$ convolution filter where K is odd

Summary

From FC to Subsampling:

Direct copying of $\delta\text{-values}.$

From Subsampling to Conv:

Direct copy or weighted combination of $\delta\text{-map}.$

From Conv:

 $conv2d(zeropad(\delta-map), fliplr(flipud(F)), 'valid')$

Gradients of convolution filter F:

conv2d(zeropad(input array), δ -map, 'valid')

Gradient of bias:

sum of δ -map