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Backpropagation in CNNs
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1. Compute 6, = 8L for each neuron in flattened layer using standard MLP

backpropagation.

2. Directly copy these s at corresponding locations of previous subsampling

layer.
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From S layer

Backpropagation from subsampling to convolution layer

» Record index of pooled neuron during forward pass.
> Backpropagate ¢ only to this pooled neuron.
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Convolution 1
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» Mean-pooling is different.
» All neurons are picked with uniform weight in forward pass.
> So backpropagate 0 to each neuron with uniform weight.

Convolution Subsample

1
Copy Zék to all 4 neurons
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From L layer

Backpropagation in a convolutional layer
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From L laye:

Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.

5(1 H'(a)) Z 5 ij

1. Take all neurons affected by neuron j.
2. Compute dot-product between their ¢ values and connecting weights.

3. Multiply result by derivative of activation function of neuron j.
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From L layer

Backpropagation in a convolutional layer

» Consider a neuron
in a convolutional
layer.

» In the forward
pass, the blue
neuron affects all
neurons marked by
X in the next layer.

» Notice the flipped
role of weights.
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From L layer

Backpropagation in a convolutional layer

» In the backward pass, the blue neuron computes the dot-product between
9 values at the x-locations and connecting weights.

o
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» The connecting weights are a horizontally and vertically flipped version of
the weights used in the forward convolution pass.
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From L layer

Backpropagation in a convolutional layer

» The adjacent red neuron affects a new but overlapping set of x-locations

using the same connecting weights.

o
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» Since the weights are shared, the only difference is between the

x-locations.
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From L layer

Backpropagation in a convolutional layer
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» Equivalent to convolving the 6-map by flipped weights.
» Therefore, backpropagation of ¢ values from a convolution layer is

1. just a convolution of the §-map using flipped weights,
2. followed by multiplication with derivatives of activation functions.
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From C layer

Backpropagation in a convolutional layer

» What about boundary neurons? Who did they affect?
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» Equivalent to convolving the d-map by flipped weights using
zero-padding.
» Therefore, backpropagation of ¢ values from a convolution layer is

1. just a convolution of the 5-map using flipped weights with
zero-padding,
2. followed by multiplication with derivatives of activation functions.
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Gradients in L layer

Computing gradients in convolutional layer

» Consider a valid convolution of an n x n array with another n x n array.
> Size of the result will be 1 x 1.
» Now consider a valid convolution of an (n+ 1) x (n+ 1) array with an
n X n array.
> What will be the size of the result?
» Now consider a valid convolution of an (n+ 2) x (n+ 2) array with an
n X n array.
> What will be the size of the result?
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Gradients in L layer

Computing gradients in convolutional layer
1D case

» Backpropagation computes the per-neuron 6-maps only.
> Per-weight derivatives are computed as the product of a traditional
neuron's ¢ value and its input.

0.
~ 2 ®<— yie—t
A s

» Consider 1D convolutional layer with 3 x 1 filter.
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> Verify that % =>0;.
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Gradients in L layer

Computing gradients in convolutional layer
2D case

1. Zero-pad the input array with L%J zeros on each sidel.

2. Perform valid convolution of the zero-padded input array by the §-map of
the next layer to obtain a K x K array of derivatives of the convolution
weights.

Zero-padded input !

3. Derivative of bias is just the sum of the d-map.

L Assuming square K x K convolution filter where K is odd
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Summary

» From FC to Subsampling:
Direct copying of d-values.

» From Subsampling to Conv:

Direct copy or weighted combination of 6-map.
» From Conv:

conv2d(zeropad(d-map), fliplr(flipud(F)), ‘valid")
» Gradients of convolution filter F:

conv2d(zeropad(input array), d-map, ‘valid’)
» Gradient of bias:
sum of §-map
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