
CS-568 Deep Learning

Nazar Khan

PUCIT

Backpropagation in a CNN



From S layer From C layer Gradients in C layer

Backpropagation in CNNs

�
Conv+Subsample

6 filters
Conv+Subsample

12 filters
Flattening

40 × 40 × 3 20 × 20 × 6 10 × 10 × 12 1200 × 1

Fully
connected

MLP

1. Compute δk = ∂L
∂ak

for each neuron in flattened layer using standard MLP
backpropagation.

2. Directly copy these δks at corresponding locations of previous subsampling
layer.

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation from subsampling to convolution layer

I Record index of pooled neuron during forward pass.
I Backpropagate δ only to this pooled neuron.

��

SubsampleConvolution

Copy

I Mean-pooling is different.
I All neurons are picked with uniform weight in forward pass.
I So backpropagate δ to each neuron with uniform weight.

1

4
��

SubsampleConvolution

Copy to all 4 neurons

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation in a convolutional layer

ConvolutionSubsample

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.

δ
(1)
j = h′(aj)

K∑
k=1

δ
(2)
k wkj

y1 ←− t1

y2 ←− t2
δ
(1)
1

δ
(2)
1

δ
(2)
2

w
(2)
11

w
(2)
21

1. Take all neurons affected by neuron j .
2. Compute dot-product between their δ values and connecting weights.
3. Multiply result by derivative of activation function of neuron j .

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation in a convolutional layer

I Consider a neuron
in a convolutional
layer.

I In the forward
pass, the blue
neuron affects all
neurons marked by
x in the next layer.

x x x
x xx
x x x

I Notice the flipped
role of weights.

x xx

�23 �22 �21

x x x

x x x

�33 �32 �31

�13 �12 �11

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation in a convolutional layer

I In the backward pass, the blue neuron computes the dot-product between
δ values at the x-locations and connecting weights.

x x x
x xx
x x x

�13 �12 �11

�23 �21�22

�33 �32 �31

I The connecting weights are a horizontally and vertically flipped version of
the weights used in the forward convolution pass.

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation in a convolutional layer

I The adjacent red neuron affects a new but overlapping set of x-locations
using the same connecting weights.

x x x

x x

�22

x

x x x

�33 �32 �31

�13 �12 �11

�23 �21

�22

�22

I Since the weights are shared, the only difference is between the
x-locations.

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation in a convolutional layer

�13 �12 �11

�23 �21�22

�33 �32 �31 �33 �32 �31

�13 �12 �11

�23 �21

�22

�22

�33 �32 �31

�13 �12 �11

�21�23 �22

I Equivalent to convolving the δ-map by flipped weights.
I Therefore, backpropagation of δ values from a convolution layer is

1. just a convolution of the δ-map using flipped weights,
2. followed by multiplication with derivatives of activation functions.

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Backpropagation in a convolutional layer

I What about boundary neurons? Who did they affect?

�22 �21

�11�12

�32

�13

�31

�23

�33

�12

�22 �21

�11

�32

�13

�31

�23

�33

�12

�22 �21

�11

I Equivalent to convolving the δ-map by flipped weights using
zero-padding.

I Therefore, backpropagation of δ values from a convolution layer is
1. just a convolution of the δ-map using flipped weights with

zero-padding,
2. followed by multiplication with derivatives of activation functions.

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Computing gradients in convolutional layer

I Consider a valid convolution of an n × n array with another n × n array.
I Size of the result will be 1× 1.

I Now consider a valid convolution of an (n + 1)× (n + 1) array with an
n × n array.
I What will be the size of the result?

I Now consider a valid convolution of an (n + 2)× (n + 2) array with an
n × n array.
I What will be the size of the result?

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Computing gradients in convolutional layer
1D case

I Backpropagation computes the per-neuron δ-maps only.
I Per-weight derivatives are computed as the product of a traditional

neuron’s δ value and its input.

y1 ←− t1

y2 ←− t2
δ
(1)
1

δ
(2)
1

δ
(2)
2

w
(2)
11

w
(2)
21

I Consider 1D convolutional layer with 3× 1 filter.

�1

�2

�3

�4

�5

�1

�2

�3

�4

�5

0

0

∂L

∂w1
= δ10+ δ2x1 + δ3x2 + δ4x3 + δ5x4

∂L

∂w2
= δ1x1 + δ2x2 + δ3x3 + δ4x4 + δ5x5

∂L

∂w3
= δ1x2 + δ2x3 + δ3x4 + δ4x5 + δ50


=⇒

[
δ1 δ2 δ3 δ4 δ5

]
? (valid)[

0 x1 x2 x3 x4 x5 0
]

I Verify that ∂L
∂b =

∑
δi .

Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Computing gradients in convolutional layer
2D case

1. Zero-pad the input array with bK2 c zeros on each side1.
2. Perform valid convolution of the zero-padded input array by the δ-map of

the next layer to obtain a K × K array of derivatives of the convolution
weights.

�-map

Zero-padded	input

3. Derivative of bias is just the sum of the δ-map.

1Assuming square K × K convolution filter where K is odd
Nazar Khan Deep Learning



From S layer From C layer Gradients in C layer

Summary

I From FC to Subsampling:
Direct copying of δ-values.

I From Subsampling to Conv:
Direct copy or weighted combination of δ-map.

I From Conv:
conv2d(zeropad(δ-map), fliplr(flipud(F)), ‘valid’)

I Gradients of convolution filter F:
conv2d(zeropad(input array), δ-map, ‘valid’)

I Gradient of bias:
sum of δ-map

Nazar Khan Deep Learning


	From S layer
	From C layer
	Gradients in C layer

