CS-568 Deep Learning

Nazar Khan

PUCIT

Backpropagation in a CNN

Backpropagation in CNNs

40x40x3 20x20x 6 10x10x 12

Conv+Subsam|gIei Conv+Subsample Flattening
6 filters 12 filters

Fully
—> connected
MLP

1200 x 1

1. Compute 6, = 8L for each neuron in flattened layer using standard MLP

backpropagation.

2. Directly copy these s at corresponding locations of previous subsampling

layer.

Nazar Khan Deep Learning

From S layer

Backpropagation from subsampling to convolution layer

» Record index of pooled neuron during forward pass.
> Backpropagate ¢ only to this pooled neuron.

Subsample

— SubsemEly,

Convolution 1

_— >

Copy 6

» Mean-pooling is different.
» All neurons are picked with uniform weight in forward pass.
> So backpropagate 0 to each neuron with uniform weight.

Convolution Subsample

1
Copy Zék to all 4 neurons

Nazar Khan Deep Learning

From L layer

Backpropagation in a convolutional layer

Subsample

e

Fy

Convolution

—_—>

0s

Nazar Khan

Deep Learning

From L laye:

Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.

5(1 H'(a)) Z 5 ij

1. Take all neurons affected by neuron j.
2. Compute dot-product between their ¢ values and connecting weights.

3. Multiply result by derivative of activation function of neuron j.

Nazar Khan Deep Learning

From L layer

Backpropagation in a convolutional layer

» Consider a neuron
in a convolutional
layer.

» In the forward
pass, the blue
neuron affects all
neurons marked by
X in the next layer.

» Notice the flipped
role of weights.

U33

Wi,

[]

X

1

Nazar Khan

Deep Learning

From L layer

Backpropagation in a convolutional layer

» In the backward pass, the blue neuron computes the dot-product between
9 values at the x-locations and connecting weights.

o

X [x| x 022 | 023 [d24 w33 (w3 w3
3. 3 (3 -
X | x|x 042 043 [044 w3 Wiz Wi

Jss

» The connecting weights are a horizontally and vertically flipped version of
the weights used in the forward convolution pass.

Nazar Khan

Deep Learning

From L layer

Backpropagation in a convolutional layer

» The adjacent red neuron affects a new but overlapping set of x-locations

using the same connecting weights.

o
x | x| x 03 |24 | d25 W33 |ws3 fws)
X 033 034 (B4 Wr3 W) [k
x | x| x 043 [044 | 045 w13 Wiz |wi

Jss

» Since the weights are shared, the only difference is between the

x-locations.

Nazar Khan Deep Learning

From L layer

Backpropagation in a convolutional layer

w33 (W32 |W3g W33 (W32 (W3] W33 W32 W31
23 LUZ] 23 e WZI
w3 Wiz |Wii Wiz Wiz Wiy Wiz (W2 Wiy

» Equivalent to convolving the 6-map by flipped weights.
» Therefore, backpropagation of ¢ values from a convolution layer is

1. just a convolution of the §-map using flipped weights,
2. followed by multiplication with derivatives of activation functions.

Nazar Khan Deep Learning

From C layer

Backpropagation in a convolutional layer

» What about boundary neurons? Who did they affect?

W331W03 W3]

Woa|wr1 1023 | W |uwr

bl LT wiz|wyz [ty

w33 [wsa w31

103 |3 {105 |

w3 w0

» Equivalent to convolving the d-map by flipped weights using
zero-padding.
» Therefore, backpropagation of ¢ values from a convolution layer is

1. just a convolution of the 5-map using flipped weights with
zero-padding,
2. followed by multiplication with derivatives of activation functions.

Nazar Khan Deep Learning

Gradients in L layer

Computing gradients in convolutional layer

» Consider a valid convolution of an n x n array with another n x n array.
> Size of the result will be 1 x 1.
» Now consider a valid convolution of an (n+ 1) x (n+ 1) array with an
n X n array.
> What will be the size of the result?
» Now consider a valid convolution of an (n+ 2) x (n+ 2) array with an
n X n array.
> What will be the size of the result?

Nazar Khan Deep Learning

Gradients in L layer

Computing gradients in convolutional layer
1D case

» Backpropagation computes the per-neuron 6-maps only.
> Per-weight derivatives are computed as the product of a traditional
neuron's ¢ value and its input.

0.
~ 2 ®<— yie—t
A s

» Consider 1D convolutional layer with 3 x 1 filter.

[UNEN
- oL
87 =010 + 02x1 + 93x2 + Iax3 + I5x4
5L (61 6 &3 &4 05
P = 01x1 + 0oxo + 03x3 + daxg + O5x5 p —> * (valid)
8‘/‘22 [O X1 X2 X3 X4 Xs O]
—— = 01X + 02x3 + I3x4 + O4x5 + 050
P 8W3
0 ’

> Verify that % =>0;.

Nazar Khan Deep Learning

Gradients in L layer

Computing gradients in convolutional layer
2D case

1. Zero-pad the input array with L%J zeros on each sidel.

2. Perform valid convolution of the zero-padded input array by the §-map of
the next layer to obtain a K x K array of derivatives of the convolution
weights.

Zero-padded input !

3. Derivative of bias is just the sum of the d-map.

L Assuming square K x K convolution filter where K is odd

Nazar Khan Deep Learning

Summary

» From FC to Subsampling:
Direct copying of d-values.

» From Subsampling to Conv:

Direct copy or weighted combination of 6-map.
» From Conv:

conv2d(zeropad(d-map), fliplr(flipud(F)), ‘valid")
» Gradients of convolution filter F:

conv2d(zeropad(input array), d-map, ‘valid’)
» Gradient of bias:
sum of §-map

Gra

dient

its in

L layer

Nazar Khan Deep Learning

	From S layer
	From C layer
	Gradients in C layer

