CS-568 Deep Learning

Nazar Khan

PUCIT

Dropout and Batchnorm

Dropout

- One of the most used regularization techniques in neural nets.
- During training, a randomly selected subset of activations are set to zero within each layer.
- ► This makes the neural network less powerful.
- Dropout layer implementation is very simple.
 - For each neuron (including inputs),
 - 1. Generate a uniform random number between 0 and 1.
 - 2. If the number is greater than α , set the neuron's output to 0.
 - 3. Otherwise, don't touch the neuron's output.
- ▶ Probably of dropping out is 1α .
- Remember which neurons were dropped so that gradients are also zeroed out during backpropagation.

Detour - Bagging

- Bagging is a popular ML meta-algorithm.
- Multiple ML models are trained separately to solve the same problem on separate subsets of the training data.
- Final answer is the average of all models.

$$F(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

- Bagging results are usually better than the best individual model.
- ▶ Dropout can be viewed as bagging.

Dropout as Bagging

- \triangleright An architecture with n neurons can have 2^n sub-architectures depending on which neurons are switched off.
- ▶ Whenever a random subset of neurons is switched off, we are essentially training only one of the 2^n sub-architectures.
- At test time, use expected output of neuron, $E[y] = \alpha h(a)$, i.e., bagging.

У	0	h(a)
P(y)	$1-\alpha$	α

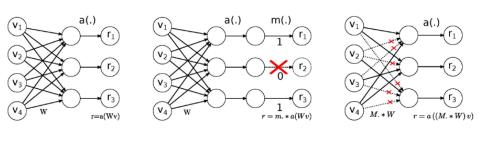
- Alternatives:
 - 1. Push α into the next layer's weights after training and do testing as before.

$$z_k = \sum_{i} w_{kj} y_j + b_k$$

=
$$\sum_{i} w_{kj} \alpha h(a_j) + b_k = \sum_{i} \underbrace{(\alpha w_{kj})}_{\widetilde{w}_{kj}} h(a_j) + b_k$$

2. During training, multiply every output by $\frac{1}{\alpha}$ and do testing as before.

Dropout vs. DropConnect



No-Drop Network

DropOut Network

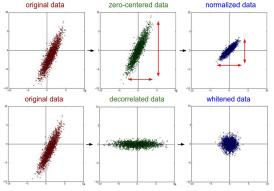
DropConnect Network

Figure: Dropout vs. DropConnect². Image taken from https://cs.nyu.edu/~wanli/dropc/

²Wan et al., 'Regularization of Neural Network using DropConnect'.

Normalisation

- ► The importance of normalising inputs is well-understood in ML.
- Improves numerical stability and reduces training time.
- ▶ Makes all features equally important before learning takes place.

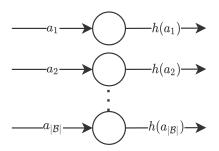


Normalisation of 2D data. Taken from http://cs231n.github.io/neural-networks-2/

- ▶ In neural networks, a neuron's input depends on previous neurons' outputs.
- ▶ Those outputs can vary wildly during training as the weights are adjusted.
- Normalising the input sample is not enough.
- Later neuron's input needs to be normalised as well.
- Inputs to every neuron in every layer must be normalised in a differentiable manner.
- Normalisation is useless for learning if gradient ignores it.

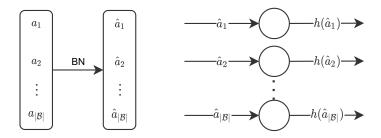
Nazar Khan Deep Learning

- For the *i*-th input sample, a neuron passes its pre-activation a_i into its activation function $h(a_i)$.
- \triangleright For a minibatch \mathcal{B} , the neuron will perform this step for each input sample in \mathcal{B} separately.



Batchnorm takes place between this step.

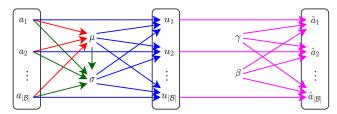
Nazar Khan Deep Learning



- Each a_i is converted to \hat{a}_i by looking at the other a_j values in the minibatch.
- ▶ Instead of a_i , the new \hat{a}_i is passed into the acitivation function.

Consider a neuron's pre-activations $a_1, a_2, \ldots, a_{|\mathcal{B}|}$ over a minibatch \mathcal{B} .

- **1.** Compute mean $\mu = \frac{\sum a_i}{|\mathcal{B}|}$.
- 2. Compute variance $\sigma^2 = \frac{\sum (a_i \mu)^2}{|\mathcal{B}|}$.
- 3. Standardize the pre-activations as $u_i = \frac{a_i \mu}{\sigma}$. This makes the set $u_1, u_2, \ldots, u_{|\mathcal{B}|}$ have zero-mean and unit-variance.
- **4.** Recover expressive power by **learnable** transformation $\hat{a}_i = \gamma u_i + \beta$.



Deep Learning

The \hat{a}_i values that are now passed into the activation function will have mean β and standard deviation γ , irrespective of original moments μ and σ for the minibatch.

The whole process is differentiable and therefore suitable for gradient descent.

Nazar Khan Deep Learning

Benefits of BatchNorm

- Avoids vanishing gradients for sigmoidal non-linearities.
- Allows much higher learning rates and therefore dramatically speeds up training.
- Reduces dependence on good weight initialisation.
- Regularizes the model and reduces the need for dropout.

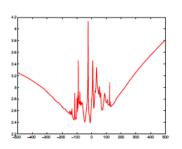
Why does Batchnorm work?

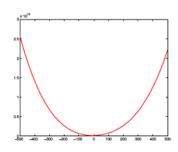
- ► The original paper³ posited that Batchnorm succeeded by reducing internal covariate shift (ICS).
 - ► ICS: Earlier neurons causing changes in distribution of inputs to subsequent neurons.
 - Causing later neurons to remain confused about which distribution to learn over.
 - Increases time to converge.
- Recent work⁴ suggests that BatchNorm's might not even be reducing ICS.
 - Infact, ICS might not even be a problem.
 - Batchnorm succeeds because it has a regularization effect.
 - It reduces the values and the gradients of the loss function.

Nazar Khan Deep Learning

³loffe and Szegedy, 'Batch normalization: Accelerating deep network training by reducing internal covariate shift' ⁴Santurkar et al., How Does Batch Normalization Help Optimization?

Why does Batchnorm work?





Learning over smooth landscapes (right) is more stable and faster since we can increase learning rate without over-shooting. This figure is illustrative – effect of batchnorm is not as drastic.

Why does Batchnorm work?

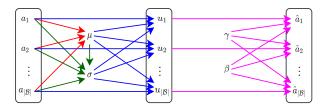
- ► Another⁵ suggestion is that it makes the learning problem easier.
- By decoupling the problems of estimation of direction and magnitude of the weight vector.
- ▶ Direction of the weight vector is learned separately from its size.

Nazar Khan

⁵Kohler et al., Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization

- Consider the *j*-th neuron in the *l*-th layer.
- Let $z_i = h(\hat{a}_i)$ be the neuron's output for the *i*-th sample in minibatch \mathcal{B} .

$$\begin{aligned}
\hat{a}_i &= \gamma u_i + \beta \\
u_i &= \frac{a_i - \mu}{\sqrt{\sigma^2 + \epsilon}} \\
\mu &= \frac{\sum a_j}{|\mathcal{B}|} \text{ and } \sigma^2 = \frac{\sum (a_j - \mu)^2}{|\mathcal{B}|}
\end{aligned}$$



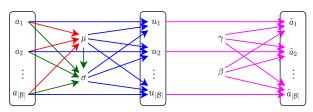
Nazar Khan Deep Learning

Recall that we can compute $\delta_i = \frac{\partial L}{\partial \hat{a}_i}$ via backpropagation as

$$\delta_i = h'(\hat{a}_i) \sum_{k=1}^K \delta_k w_{kj}^{(l+1)}$$

- ▶ So we will assume $\frac{\partial L}{\partial \hat{a}_i}$ is already computed via backpropagation.
- Since $\hat{a}_i = \gamma u_i + \beta$,

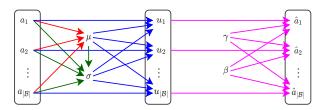
$$\frac{\partial L}{\partial u_i} = \frac{\partial L}{\partial \hat{a}_i} \frac{\partial \hat{a}_i}{\partial u_i} = \delta_i \gamma$$



Nazar Khan Deep Learning

- ► Goal: Compute $\frac{\partial L}{\partial a}$ and proceed with backpropagation from there.
- ▶ *Direct* affectees of a_i are: u_i , μ and σ^2 .
- ▶ So treat loss function as $L(u_i(a_i), \mu(a_i), \sigma^2(a_i))$.
- Using multivariate chain rule

$$\frac{\partial L}{\partial a_i} = \frac{\partial L}{\partial u_i} \frac{\partial u_i}{\partial a_i} + \frac{\partial L}{\partial \mu} \frac{\partial \mu}{\partial a_i} + \frac{\partial L}{\partial \sigma^2} \frac{\partial \sigma^2}{\partial a_i}$$



an Deep Learning

Using multivariate chain rule

$$\begin{split} \frac{\partial L}{\partial a_{i}} &= \frac{\partial L}{\partial u_{i}} \frac{\partial u_{i}}{\partial a_{i}} + \frac{\partial L}{\partial \mu} \frac{\partial \mu}{\partial a_{i}} + \frac{\partial L}{\partial \sigma^{2}} \frac{\partial \sigma^{2}}{\partial a_{i}} \\ &= \frac{\partial L}{\partial u_{i}} \frac{\partial u_{i}}{\partial a_{i}} + \left(\frac{\partial L}{\partial \sigma^{2}} \frac{\partial \sigma^{2}}{\partial \mu} + \sum_{\mathcal{B}} \frac{\partial L}{\partial u_{j}} \frac{\partial u_{j}}{\partial \mu} \right) \frac{\partial \mu}{\partial a_{i}} + \left(\sum_{\mathcal{B}} \frac{\partial L}{\partial u_{j}} \frac{\partial u_{j}}{\partial \sigma^{2}} \right) \frac{\partial \sigma^{2}}{\partial a_{i}} \\ &= \frac{\partial L}{\partial u_{i}} \frac{1}{\sqrt{\sigma^{2} + \epsilon}} + \sum_{\mathcal{B}} \frac{\partial L}{\partial u_{j}} \frac{-1}{\sqrt{\sigma^{2} + \epsilon}} \frac{1}{|\mathcal{B}|} + \\ &\qquad \qquad \sum_{\mathcal{B}} \frac{\partial L}{\partial u_{j}} \left(-\frac{1}{2} \frac{a_{j} - \mu}{(\sigma^{2} + \epsilon)^{\frac{3}{2}}} \right) \left(\underbrace{\frac{\partial \sigma^{2}}{\partial a_{j}}}_{|\mathcal{B}|} + \underbrace{\sum_{\mathcal{B}} \frac{2(a_{j} - \mu)}{\partial \mu} (-1) \left(\frac{1}{|\mathcal{B}|} \right)}_{=0} \right) \\ &= \frac{\partial L}{\partial u_{i}} \frac{1}{\sqrt{\sigma^{2} + \epsilon}} - \frac{1}{|\mathcal{B}|} \frac{1}{\sqrt{\sigma^{2} + \epsilon}} \sum_{\mathcal{B}} \frac{\partial L}{\partial u_{i}} - \underbrace{\frac{(a_{i} - \mu)}{|\mathcal{B}|} (a_{j} - \mu)}_{|\mathcal{B}||\sigma^{2} + \epsilon)^{\frac{3}{2}}} \sum_{\mathcal{B}} \frac{\partial L}{\partial u_{i}} (a_{j} - \mu) \end{split}$$

Deep Learning

Batchnorm at testing time

- Testing is not done on minibatches.
- But each neuron trained itself on batchnormed pre-activations.
- It expects batchnormed pre-activations at testing time as well.
- Solution: Once the network is trained, for each neuron, compute the average μ , σ^2 over the set S of all training minibatches.

$$\mu_{\text{test}} = \frac{1}{|\mathcal{S}|} \sum_{\mathcal{B} \in \mathcal{S}} \mu(\mathcal{B})$$

$$\sigma_{\text{test}}^2 = \frac{|\mathcal{B}|}{|\mathcal{B}| - 1} \frac{1}{|\mathcal{S}|} \sum_{\mathcal{B} \in \mathcal{S}} \sigma^2(\mathcal{B})$$

- \triangleright $\frac{|\mathcal{B}|}{|\mathcal{B}|-1}$ for computing unbiased estimator of variance.
- Use μ_{test} , σ_{test} to normalize every testing sample.

Nazar Khan Deep Learning

So is Batchnorm legit?

- Around 2006, deep networks were successfully trained using greedy, unsupervised, layer-wise pretraining.
- ► The method worked but was unintuitive. Why should pretraining avoid vanishing gradients?
- We now know that greedy layer-wise pretraining is not necessary for deep networks.
- ▶ Batchnorm has the same feel to it.
- ▶ It works (extremely well) but what's the intuition behind making the *i*-th training sample's output *dependent* on other *randomly chosen* training samples?
- ► The jury is still out on Batchnorm.

Summary

- Dropout restricts a neural network's power by randomly dropping some neurons.
- ▶ Batchnorm regularizes by reducing gradients of the loss.