CS-568 Deep Learning

Nazar Khan

PUCIT

Training Neural Networks: Forward and Backward Propagation

NN

Neural Networks

Input Hidden Output
layer layer layer

Output of a neural network can be visualised graphically as forward
propagation of information.

Nazar Khan Deep Learning

NN

Neural Networks
Notation

» Input layer neurons will be indexed

by i.
» Hidden layer neurons will be

indexed by J- Input Hidden Output
» Next hidden layer or output layer layer layer layer

neurons will be indexed by k.

» Weights of j-th hidden neuron will
be denoted by the vector
wj(-l) e RP.

> Weight between i-th input neuron
and j-th hidden neuron is Wj(l-l).

» Weights of k-th output neuron will
be denoted by the vector
wf) € RM.

» Weight between j-th hidden neuron
and k-th output neuron is W,SJ?).

. J

Nazar Khan Deep Learning

NN

Neural Networks
Forward Propagation

» For input x, denote output of hidden layer
as the vector z(x) € RM.

» Model zj(x) as a non-linear function h(aj)

.)T

where pre-activation aj = w;

(1)

x with

adjustable parameters w;
» So the k-th output can be written as

w(x) = f(a) = Fw? T 2(x))

Input Hidden Output
layer layer layer

M
2 2
(S) < (S (i) 0)
=

where we have prepended xp = 1 to to absorb bias input and Wjo

)

w,, represent biases.

() and

Nazar Khan Deep Learning

NN

Neural Networks
Forward Propagation

» The computation

ye(x, W) = f Z W(2)h (Z (1)) g)

can be viewed in two stages:
1. zj= h(wj(-l)Tx) forj=1,....,M.
2. k= f(wf(z)Tz).

Nazar Khan Deep Learning

NN

Neural Networks
Forward Propagation

» |If we define the matrices

T T
—w; — —w —
— W(I)T — — w(2)T _
w) = 2 and WP = 2
— WS\},)T — +— wi?)T —
Mx(D+1) Kx(M+1)

then forward propagation constitutes
1. z = h(WW®Mx).
2. Prepend 1 to z.
3. y=f(W®z).

Nazar Khan Deep Learning

Multivariate Chain Rule

Neural Networks for Regression
Gradients

» Regression requires continuous output y, € R.

» So use identity activation function yx = f(ax) = ax.

\4

Loss can be written as

1 N 1 N K
L(W(l)vw(z)) = 7Z’|Yn_tn”2 722 Ynk — tnk
2 n=1 L'n 2 n=1 k=1

v

Loss L depends on sum of individual losses L.

v

In the following, we will focus on loss L, for the n-th training sample.

v

We will drop n for notational clarity and refer to L, simply as L.

Nazar Khan Deep Learning

Multivariate Lhain Rule

How do weights influence loss?

“ @

W/EJ?) influences ag(z) which influences yx which influences L.

vy

For scalar dependencies, use chain rule.

> VVJ-(I-l) influences aJ(-l) which influences z; which influences agz)’ agz)’ ag2)
which influence yi, y», y3 which influence L.

» For vector/multivariate dependencies, use multivariate chain rule.

Nazar Khan Deep Learning

Multivariate Lhain Rule

How do weights influence loss?

X0 @
‘. @)
X1 s
AN
X2
L
X3 .
X4 .
» Layer 2: L < yy «+ a(z) — W,(j).

Lyk(a2 (W)

> Layer 1: Leyea(”ez ea() j(il).

Ly (@ (z(aM (W), y2(38 (21 (P (WD), - (@ (22D (wiP))))

yi(wi) ya(wt) e(w)

Nazar Khan Deep Learning

Multivariate Chain Rule

Multivariate Chain Rule

» The chain rule of differentiation states

df(u(x)) _ df du
dx "~ du dx
» The multivariate chain rule of differentiation
states
dr(ux) v(x)) _ OF du_Of dv
dx " Qudx Ovdx
» The multivariate chain rule applied to compute

derivatives w.r.t weights of hidden layers has a
special name — backpropagation.

X— U—f

N

X f(u,v)

NS

Nazar Khan Deep Learning

Backpropagation

Backpropagation

X0 @ @
) ®
1
(1)
Wa1
X2 .
L

X3 .
« @

» For the output layer weights

oLy(aPDwD)) oL 0a?
ow,?) 92> dw,?)

Nazar Khan Deep Learning

Backpropagation

Backpropagation

X0 @ @
“ e .
(1)
M . Wa1 . *\}‘
L
e \O
“« @
[

» For the hidden layer weights, using the multivariate chain rule

(@2 (@D (wP))).ya(a (D (wSN)). (@ (@ (wiP))))

ji

K (1)

B & oL 9aP) 0z 04
0V owd = 04> 9% 04t owV

(2) v M
Ok W h’(a(-l)) Xi
J

(1)
oL aaj

= 5J'X,'

NagarKhpet .- .y . - . ¢ - Deep Learning

Backpropagation

Backpropagation

» |t is important to note that

K

0; = h'(a)) D Skwij

k=1
yields the error §; at hidden neuron j by backpropagating the errors J;
from all output neurons that use the output of neuron j.

» More generally, compute error §; at a layer by backpropagating the errors
dx from next layer.

» Hence the names error backpropagation, backpropagation, or simply
backprop.

» Very useful machine learning technique that is not limited to neural
networks.

Nazar Khan Deep Learning

Backpropagation

Backpropagation

5(1 aj) Z 5 ij

© P

./QE)\ b

Figure: Visual representation of backpropagation of delta values of layer / + 1 to
compute delta values of layer /.

Nazar Khan Deep Learning

Backpropagation

Backpropagation
Learning Algorithm

1. Forward propagate the input vector x, to compute and store activations
and outputs of every neuron in every layer.

2. Evaluate 6 = géz for every neuron in output layer.

oL . . .
3. Evaluate §; = 95, for every neuron in every hidden layer via

backpropagation.

K
(Sj = h'(aj) Z 5kaj

k=1

4. Compute derivative of each weight %LV; via d xinput.

1 _ oL,
=W =%

5. Update each weight via gradient descent w”

Nazar Khan Deep Learning

Backpropagation

Tanh

A~

>

>

1,1) sigmoidal function

Since range of logistic sigmoid o(a) is (0, 1), we can obtain a function
with (—1,1) range as 20(a) — 1.

Another related function with (—1, 1) range is the tanh function.
e? _ o2
anh(a) o(2a) e

where o is applied on 2a.

Preferred®over logistic sigmoid as activation function h(a) of hidden
neurons.

Just like the logistic sigmoid, derivative of tanh(a) is simple:
1 — tanh?(a). (Prove it.)

'LeCun et al., ‘Efficient backprop'.

Nazar Khan Deep Learning

Backpropagation

A Simple Example

» Two-layer MLP for multivariate regression from RP? — RX.
» Linear outputs yx = a, with half-SSE L = %Zszl(Yk — t)?.
» M hidden neurons with tanh(-) activation functions.

Forward propagation Backpropagation
D K
1 2
N ==Y il
i=0 k=1
zj = tanh(aj)
=1
Yk = Z WkJ ZJ
Ok = Yk — tk
» Compute derivatives 8—(= 0jx; and S0 = 0xz;.
ow, 8w

Ji kj

Nazar Khan Deep Learning

Backpropagation

Backpropagation
Verifying Correctness

» Numerical derivatives can be computed via finite central differences

oL, La(wji +€) — Ln(wji —€) 2
owj; B 2e R

» Analytical derivatives computed via backpropagation must be compared
with numerical derivatives for a few examples to verify correctness.

» Any implementation of analytical derivatives (not just backpropagation)
must be compared with numerical derivatives.

» Notice that we could have avoided backpropagation and computed all
required derivatives numerically.

> But cost of numerical differentiation is O(W?) while that of
backpropagation is O(W) where W is the total number of weights (and
biases) in the network. (Why?)

Nazar Khan Deep Learning

Uptimisation

Neural Network training finds local minimum

> For optimisation, we notice that w* must be a stationary point of E(w).
» Minimum, maximum, or saddle point.
> A saddle point is where gradient vanishes but point is not an extremum
(Example).

» The goal in neural network minimisation is to find a local minimum.

v

A global minimum, even if found, cannot be verified as globally minimum.

» Due to symmetry, there are multiple equivalent local minima. Reaching
any suitable local minimum is the goal of neural network optimisation.

» Since there are no analytical solutions for w*, we use iterative, numerical
procedures.

Nazar Khan Deep Learning

http://mathcatalog.tumblr.com/post/77619843777/studygeek-without-mathematics-you-wouldnt-have

Uptimisation

Optimisation Options

» Options for iterative optimisation
» Online methods
> Stochastic gradient descent
> Stochastic gradient descent using mini-batches
» Batch methods
> Batch gradient descent
» Conjugate gradient descent
> Quasi-Newton methods
» Online methods

> converge faster since parameter updates are more frequent, and

> have greater chance of escaping local minima because stationary point
w.r.t to whole data set will generally not be a stationary point w.r.t an
individual data point.

» Batch methods: Conjugate gradient descent and quasi-Newton methods

> are more robust and faster than batch gradient descent, and
> decrease the error function at each iteration until arriving at a minimum.

Nazar Khan Deep Learning

vanishing Gradients

Problems with sigmoidal neurons

-
="
-

» For large |a|, sigmoid value approaches either 0 or 1. This is called
saturation.

» When the sigmoid saturates, the gradient approaches zero.

» Neurons with sigmoidal activations stop learning when they saturate.

» When they are not saturated, they are almost linear.

» There is another reason for the gradient to approach zero during

backpropagation.

Nazar Khan Deep Learning

vanishing Gradients

Vanishing Gradients

» Notice that gradient of the sigmoid is always between 0 and %

» Now consider the backpropagation equation.

5 =H(a Z Wi O

S

-Mi—l

where . will also contain at least one factor of < %

» This means that values of §; keep getting smaller as we backpropagate
towards the early layers.

> Since gradient = dxinput, the gradients also keep getting smaller for the
earlier layers. Known as the vanishing gradients problem.

» Therefore, while the network might be deep, learning will not be deep.

Nazar Khan Deep Learning

Activation Functions

Better Activation Functions

Name f(a) Plot Derivative Comments
Logistic sigmoid ﬁ I) f(a)(1 —f(a)) Vanishing gradients
Hyperbolic tangent tanh(a) _ Co1- tanh?(a) Vanishing gradients
Rectified Linear Unit a ifa>0 -V ., 1 Dead neurons.
(ReLU) 0 ifa<o 0 Sparsity.

Leaky ReLU 2 iFa>0 —r ! O<k<l
ka ifa<o0 k

Exponential Linear Unit a fa>0 V| 1 k>0

(ELU) k(e? —1) fa<0 f(a) — k '

» Saturated sigmoidal neurons stop learning. Piecewise-linear units keep
learning by avoiding saturation.

» ELU leads to better accuracy and faster training.

» Take home message: For hidden neurons, use a member of the LU family.
They avoid /) saturation and ii) the vanishing gradient problem.

Nazar Khan Deep Learning

	NN
	Multivariate Chain Rule
	Backpropagation
	Optimisation
	Vanishing Gradients
	Activation Functions

