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GD Rprop Taylor Series Quickprop

So far . . .

I Neural Networks are universal approximators.
I Backpropagation allows computation of derivatives in hidden layers.
I Gradient descent finds weights corresponding to local minimum of loss

surface.
I In this lecture: alternative methods of finding local minima of loss surface.

I First-order methods
I Rprop

I Second-order methods
I Taylor series approximation
I Newton’s method
I Quickprop

I Next lecture:
I Momentum-based first-order methods
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Gradient Descent in Higher Dimensions

I Let ∆wτ+1 denote the stepat time τ + 1.

w τ+1 = w τ + ∆w τ+1

I For gradient descent

∆wτ+1 = −η∇τwL

I For gradient descent in 1D,

∆w τ+1 = −η dL

dw

∣∣∣∣
τ

The only issue is determining learning rate η.
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Iso-contours of f (x , y)

A function that changes faster in y -direction.

I In higher dimensions, if
∣∣∣ ∂L∂wi

∣∣∣ >> ∣∣∣ ∂L∂wj

∣∣∣ then using the same η can result
in overshooting in the direction of wi and very slow convergence in the
direction of wj .

I Solution: separate learning rate ηi for each direction wi .
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Resilient Propagation (Rprop)

I In Rprop1, each direction is handled independently.
I Increase learning rate for direction i if current derivative has same sign as

previous derivative.
I Otherwise, you just overshot a minimum.

I So go back to previous location.
I Decrease learning rate for that direction.
I Update parameter with this smaller step.

ηi =


αηi if ∂L

∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

> 0

βηi if ∂L
∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

< 0

ηi otherwise

I Hyperparameters should follow the constraint α > 1 and β < 1.
1Riedmiller and Braun, ‘A direct adaptive method for faster backpropagation learning:

The RPROP algorithm’.
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Resilient Propagation (Rprop)

I Typical values are α = 1.2 and β = 0.5.
I Increase learning rate slowly but decrease quickly when you overshoot.

I In practice, learning rates are bounded via ηmin and ηmax.

ηi =


min(αηi , ηmax) if ∂L

∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

> 0

max(βηi , ηmin) if ∂L
∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

< 0

ηi otherwise

I Rprop converges much faster than gradient descent.
I But it works well when derivatives are accumulated over large batches.
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Taylor Series Approximation

I If values of a function f (a) and its derivatives f ′(a), f ′′(a), . . . are known
at a value a, then we can approximate f (x) for x close to a via the Taylor
series expansion

f (x) ≈ f (a)+(x−a)1 f
′(a)

1!
+(x−a)2 f

′′(a)

2!
+(x−a)3 f

′′′(a)

3!
+O((x−a)4)

I Using ∆x = x − a, Taylor series can be equivalently expressed as

f (a + ∆x) ≈ f (a) + (∆x)1 f
′(a)

1!
+ (∆x)2 f

′′(a)

2!
+ (∆x)3 f

′′′(a)

3!
+ O((∆x)4)

=
∞∑
n=0

1
n!
f n(a)(∆x)n
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Taylor Series Approximation
Examples

I For x around a = 0
I sin(x) ≈ x − x3

3! + x5

5! −
x7

7! + . . .

I ex ≈ 1 + x1

1! + x2

2! + x3

3! + x4

4! + . . .
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Taylor Series Approximation
Not very useful for x not close to a
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3rd order approx. at 0
7th order approx. at 0

The sine function (blue) is closely approximated around 0 by its Taylor
polynomials. The 7th order approximation (green) is good for a full period
centered at 0. However, it becomes poor for |x − 0| > π.
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Taylor Series Approximation

I It is often convenient to use the first-order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a)

or the second order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a) +
1
2

(∆x)2f ′′(a)

I In d-dimensional input space

f (a + ∆x) ≈ f (a) + ∆xT∇f +
1
2

∆xTH∆x

where H ∈ Rd×d is the Hessian matrix composed from second derivatives.

H =


∂2f

∂x1∂x1
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xd
∂2f

∂x2∂x1
∂2f

∂x2∂x2
. . . ∂2f

∂x2∂xd
...

...
. . .

...
∂2f

∂xd∂x1
∂2f

∂xd∂x2
. . . ∂2f

∂xd∂xd
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Newton’s Method for finding stationary points

I Starting from a0, we want to find a stationary point of f .
I Instead of actual function f , use a quadratic approximation (second-order

Taylor expansion) of f at a0.
I Find a step ∆x such that a0 + ∆x minimizes the quadratic approximation

of f .

d

d∆x

(
f (a0) + f ′(a0)∆x +

1
2
f ′′(a0)(∆x)2

)
= 0

f ′(a0) + f ′′(a0)∆x = 0

∆x = − f ′(a0)

f ′′(a0)

I Move to a1 = a0 + ∆x and repeat the process at a1.
I Continue until convergence to a stationary point an.
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Newton’s Method for finding stationary points
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Newton’s Method for finding stationary points
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Newton’s Method for finding stationary points
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Newton’s Method for finding stationary points
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Quadratic approximation of f at 0.90
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Newton’s Method for finding stationary points
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Newton’s Method
Role of the 2nd-derivative

I For weights of a neural network, Newton’s update corresponds to

w τ+1 = w τ −
(
∂2L

∂w2

)−1
∂L

∂w

I In other words, gradient descent learning rate η corresponds to inverse of
2nd-derivative.

I Division by 2nd-derivative can also be viewed as normalising the gradient.
I In higher dimensions

wτ+1 = wτ −H−1∇wL

The inverse Hessian matrix normalises the gradient vector.
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Newton’s Method
Role of the 2nd-derivative

I Complete Hessian matrix is rarely used because of its size and
computational cost of inverting it.

I Common assumption: diagonal Hessian matrix.

H =


∂2f

∂x1∂x1
0 . . . 0

0 ∂2f
∂x2∂x2

. . . 0
...

...
. . .

...
0 0 . . . ∂2f

∂xd∂xd


I Inverse of diagonal matrix is cheap (reciprocal of entries on the diagonal).
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Quickprop

I Decouple all directions.
I Perform Newton updates in each direction.

w τ+1
i = w τ

i −
(
∂2L

∂w2
i

)−1
∂L

∂wi

I Approximate 2nd-derivative numerically by finite difference of
1st-derivatives.

∂2L

∂w2
i

≈
∂L
∂wi

∣∣∣
τ
− ∂L

∂wi

∣∣∣
τ−1

∆w τ−1
i

I Leads to very fast convergence.
I Some instability where loss is non-convex since everything is based on

assumptions of convexity (quadratic approximation in Newton’s method).

Fahlman, An empirical study of learning speed in back-propagation networks.
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Summary

I For complex and non-convex loss functions of deep networks, vanilla
gradient descent can get stuck in poor local minima and saddle points.

I It can also converge very slowly.
I Different directions require different learning rates.
I Adaptive learning rates are very important.
I Next lecture: momentum-based first-order methods.
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