# **CS-568** Deep Learning

Nazar Khan

**PUCIT** 

Language Modelling

# Outline

1. Modelling input text as numeric vectors

- 2. Text generation
- 3. Language translation

### Modelling text as numeric vectors

- Corpus: Consider a dataset of news articles.
- ightharpoonup Vocabulary: Set  $V^{\text{in}}$  of (all or most frequent) unique words in the corpus.
- ightharpoonup Assume size of vocabulary is  $K^{\text{in}}$  words.
- ► Each word can be represented using 1-of-K coding.
- ightharpoonup For example, k-th word in V can be represented as

$$\mathbf{y}_k = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where 1 appears at the k-th index.

#### Inefficiency of 1-hot vectors

- ► 1-of-*K* coding is
  - 1. tremendously inefficient since  $K^2$  numbers represent K words only, and
  - 2. *highly unrealistic* since 1-hot vectors are orthogonal while words have similarities.

 Project word vectors onto lower dimensional space via projection/embedding matrix E.

$$e = Ey$$

- Matrix E is of size  $D \times K^{\text{in}}$  where  $D \ll K^{\text{in}}$ .
- Optimal matrix E can be learned as part of the network parameters.

### Output

# ► Let output language have a vocabulary $V^{\text{out}}$ of $K^{\text{out}}$ words.

- The second of th
- ▶ Then output layer is softmax on  $K^{\text{out}}$  neurons.

#### Loss

For a sentence of  $T_n$  words, we can use cross-entropy between output sequence and target sequence.

$$\mathcal{L}_n\left(\left(\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(T_n)}\right), \left(\mathbf{t}^{(1)}, \mathbf{t}^{(2)}, \dots, \mathbf{t}^{(T_n)}\right)\right) = -\sum_{t=1}^{T_n} \sum_{j=1}^{K^{\text{out}}} t_j^{(t)} \ln y_j^{(t)}$$

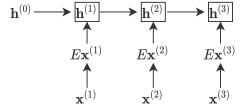
$$= -\sum_{t=1}^{T_n} \ln y_{\text{target}}^{(t)}$$

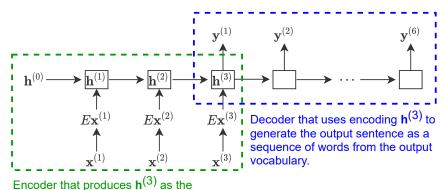
- Training can be performed using BPTT on a corpus (typically) containing millions of words.
- Each sentence constitutes one training example.

### Text Generation

- ▶ Problem: generate a sequence of words  $w^{(1)}, w^{(2)}, \dots$
- We will add two new words to the vocabulary.
  - sos: start of sentence
  - eos: end of sentence
- Solution:
  - 1. At time t=1, feed  $w^{(0)}$  the sos word. That is, starting vector is  $\mathbf{x}^{(0)}=\mathbf{0}$ .
  - **2.** Compute probability distribution  $\mathbf{y}^{(1)}$ . 3. Sample a word  $w^{(1)}$  from this distribution.
  - - 3.1 argmax, or
    - 3.2 random sampling based on probabilities in  $\mathbf{v}^{(1)}$ , or
    - 3.3 any other sampling method.
  - **4.** At every time step  $t=1,\ldots$ , feed w(t-1) as input, generate probability distribution  $\mathbf{v}^{(t)}$  and sample next word w(t) from it.
  - 5. Continue until eos is sampled.

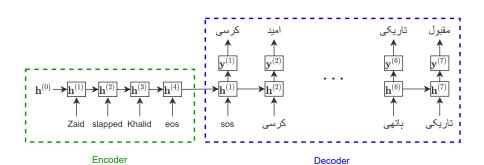
Zaid slapped Khalid 
$$\longrightarrow$$
 زید نے خالد کو تھپڑ مارا  $\mathbf{x}^{(1)}$   $\mathbf{x}^{(2)}$   $\mathbf{x}^{(3)}$   $\mathbf{y}^{(6)}$   $\mathbf{y}^{(5)}$   $\mathbf{y}^{(4)}$   $\mathbf{y}^{(3)}$   $\mathbf{y}^{(2)}$   $\mathbf{y}^{(1)}$ 





encoding of the whole input sequence.

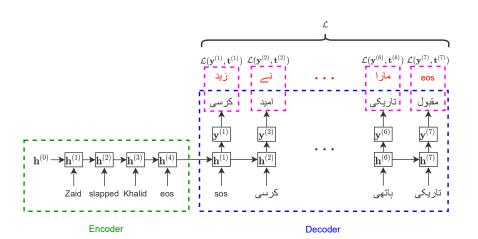
#### Language Translation A better decoder



Make probability distribution  $\mathbf{y}^{(t+1)}$  depend on word drawn from  $\mathbf{v}^{(t)}$  as well.

$$y_j^{(t)} = P(o^{(t)} = V_j | \underbrace{o^{(t-1)}, o^{(t-2)}, \dots, o^{(1)}}_{\text{all words output so far}}, \underbrace{w^{(1)}, w^{(2)}, \dots, w^{(T_{\text{in}})}}_{\text{all input words}})$$

# Language Translation Training



Deep Learning

# Testing: Finding the most likely output

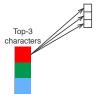
- As mentioned earlier, sampling of words can be accomplished via
  - 1. argmax on each  $\mathbf{y}^{(t)}$ , or
- **2.** random sampling from each  $\mathbf{y}^{(t)}$
- Both sampling methods produce locally optimal words.
- ▶ A better but costlier alternative is to find a globally optimal output sequence.

At time t = 1, pick the M most probable options instead of all  $K^{out}$  options.



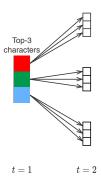
$$t = 1$$

*Conditioned* on each option at t = 1, pick the M most probable options at t = 2.

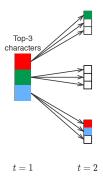


$$t = 1$$
  $t = 2$ 

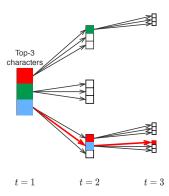
*Conditioned* on each option at t = 1, pick the M most probable options at t = 2.



*Conditioned* on each option at t = 1, pick the M most probable options at t = 2.



Conditioned on each path at t = 2, pick the M most probable options at t = 3.



- A sequence is terminated when eos is drawn.
- ▶ When no unterminated sequence remains, select the most likely sequence across all terminating sequences.