CS-568 Deep Learning

Nazar Khan

PUCIT

Loss Functions and Activation Functions for Machine Learning

Pre-requisites

- Before looking at how a multilayer perceptron can be trained, one must study

1. Gradient computation
2. Gradient descent
3. Loss functions for machine learning
4. Smooth activation functions

Loss Functions for Machine Learning

Notation:

- Let $x \in \mathbb{R}$ denote a univariate input.
- Let $\mathrm{x} \in \mathbb{R}^{D}$ denote a multivariate input.
- Same for targets $t \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^{K}$.
- Same for outputs $y \in \mathbb{R}$ and $\mathbf{y} \in \mathbb{R}^{K}$.
- Let θ denote the set of all learnable parameters of a machine learning model.

Loss Functions for Machine Learning

Regression

- Univariate

$$
L(\theta)=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-t_{n}\right)^{2}
$$

- Multivariate

$$
L(\theta)=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{y}_{n}-\mathbf{t}_{n}\right\|^{2}
$$

- Known as half-sum-squared-error (SSE) or ℓ_{2}-loss.
- Verify that both losses are 0 when outputs match targets for all n. Otherwise, both losses are greater than 0.

Background

- Logarithm is a monotonically increasing function.
- Probability lies between 0 and 1 .
- Between 0 and 1, logarithm is negative.
- So $-\ln (p(x))$ approaches ∞ for $p(x)=0$ and 0 for $p(x)=1$.
- Can be used as a loss function.

$-\ln (p(x))$

Loss Functions for Machine Learning

- For two-class classification, targets can be binary.
- $t_{n}=0$ if \mathbf{x}_{n} belongs to class \mathcal{C}_{0}.
- $t_{n}=1$ if \mathbf{x}_{n} belongs to class \mathcal{C}_{1}.
- If output y_{n} can be restricted to lie between 0 and 1 , we can treat it as probability of \mathbf{x}_{n} belonging to class \mathcal{C}_{1}. That is, $y_{n}=P\left(\mathcal{C}_{1} \mid \mathbf{x}_{n}\right)$.
- Then $1-y_{n}=P\left(\mathcal{C}_{0} \mid \mathbf{x}_{n}\right)$.
- Ideally,
- y_{n} should be 1 if $\mathbf{x}_{n} \in \mathcal{C}_{1}$, and
- $1-y_{n}$ should be 1 if $\mathbf{x}_{n} \in \mathcal{C}_{0}$.
- Equivalently,
$-\ln y_{n}$ should be 0 if $x_{n} \in \mathcal{C}_{1}$, and
- $-\ln \left(1-y_{n}\right)$ should be 0 if $x_{n} \in \mathcal{C}_{0}$.
- So depending upon t_{n}, either $-\ln y_{n}$ or $-\ln \left(1-y_{n}\right)$ should be considered as loss.

Loss Functions for Machine Learning

Binary Classification

- Using t_{n} to pick the relevant loss, we can write total loss as

$$
L(\theta)=-\sum_{n=1}^{N} t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)
$$

- Known as binary cross-entropy (BCE) loss.
- Verify that BCE loss is 0 when outputs match targets for all n. Otherwise, loss is greater than 0 .

Loss Functions for Machine Learning

- For multiclass classification, targets can be represented using 1 -of-K coding. Also known as 1 -hot vectors.
- 1-hot vector: only one component is 1 . All the rest are 0 .
- If $t_{n 3}=1$, then \mathbf{x}_{n} belongs to class 3 .
- If outputs of K neurons can be restricted to

1. $0 \leq y_{n k} \leq 1$, and
2. $\sum_{k=1}^{K} y_{n k}=1$,
then we can treat outputs as probabilities.

- Later, we shall see activation functions that produce per-class probability values.

$$
\mathbf{t}_{n}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
\mathbf{y}_{n}=\left[\begin{array}{l}
P\left(\mathcal{C}_{1} \mid \mathbf{x}_{n}\right) \\
P\left(\mathcal{C}_{2} \mid \mathbf{x}_{n}\right) \\
P\left(\mathcal{C}_{3} \mid \mathbf{x}_{n}\right) \\
P\left(\mathcal{C}_{4} \mid \mathbf{x}_{n}\right) \\
P\left(\mathcal{C}_{5} \mid \mathbf{x}_{n}\right)
\end{array}\right]
$$

Loss Functions for Machine Learning

Multiclass Classification

- Similar to BCE loss, we can use $t_{n k}$ to pick the relevant negative log loss and write overall loss as

$$
L(\theta)=-\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n k} \ln y_{n k}
$$

- Known as multiclass cross-entropy (MCE) loss.
- Verify that MCE loss is 0 when outputs match targets for all n. Otherwise, loss is greater than 0 .

Convexity

- A function $f(x)$ is convex if every chord lies on or above the function.
- Can be minimized by finding stationary point. There will only be one.

- Loss functions for neural networks are not convex.
- They have multiple local minima and maxima.
- Can be minimized via gradient descent.

Second Derivative

- First derivative equal to zero determines stationary points.
- Second derivative distinguishes between maxima and minima.
- At maximum, second derivative is negative.
- At minimum, second derivative is positive.
- But all of the above applies to functions in 1-dimension.
- In higher dimensions, stationary point is still defined by $\nabla f=0$.
- But there will be a second derivative in each dimension - some might be positive and some negative.
- So how can we distinguish between maxima and minima in higher dimensions?

Higher Dimensions

- In D-dimensions, maxima and minima are distinguished via a special $D \times D$ matrix of second derivatives known as the Hessian matrix.

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{D}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{D}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{D} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{D} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{D} \partial x_{D}}
\end{array}\right]
$$

- If $\mathrm{x}^{\top} \mathrm{H} \mathrm{x} \geq 0$ for all $\mathrm{x} \neq 0$, then H is positive semi-definite.
- This is equivalent to H having non-negative eigenvalues.

If Hessian matrix at a stationary point x is positive semi-definite, then x is a (local) minimizer of f.

Matrix and Vector Derivatives

For scalar function $f \in \mathbb{R}$,

$$
\begin{aligned}
& \nabla_{\mathbf{v}} f=\frac{\partial f}{\partial \mathbf{v}}=\left[\begin{array}{llll}
\frac{\partial f}{\partial v_{1}} & \frac{\partial f}{\partial v_{2}} & \cdots & \frac{\partial f}{\partial v_{D}}
\end{array}\right] \\
& \nabla_{\mathbf{M}} f=\frac{\partial f}{\partial \mathbf{M}}=\left[\begin{array}{cccc}
\frac{\partial f}{\partial M_{11}} & \frac{\partial f}{\partial M_{12}} & \cdots & \frac{\partial f}{\partial M_{1 n}} \\
\frac{\partial f}{\partial M_{21}} & \frac{\partial f}{\partial M_{22}} & \cdots & \frac{\partial f}{\partial M_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f}{\partial M_{m 1}} & \frac{\partial f}{\partial M_{m 2}} & \cdots & \frac{\partial f}{\partial M_{m n}}
\end{array}\right]
\end{aligned}
$$

For vector function $\mathbf{f} \in \mathbb{R}^{K}$,

$$
\nabla_{\mathbf{v}} \mathbf{f}=\left[\begin{array}{c}
\nabla_{\mathbf{v}} f_{1} \\
\nabla_{\mathbf{v}} f_{2} \\
\vdots \\
\nabla_{\mathbf{v}} f_{K}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial v_{1}} & \frac{\partial f_{1}}{\partial v_{2}} & \cdots & \frac{\partial f_{1}}{\partial v_{D}} \\
\frac{\partial f_{2}}{\partial v_{1}} & \frac{\partial f_{2}}{\partial v_{2}} & \cdots & \frac{\partial f_{2}}{\partial v_{D}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{K}}{\partial v_{1}} & \frac{\partial f_{K}}{\partial v_{2}} & \cdots & \frac{\partial f_{K}}{\partial v_{D}}
\end{array}\right]
$$

Activation Functions

- Recall that a perceptron has a non-differentiable activation function, i.e., step function.
- Zero-derivative everywhere except at 0 where it is non-differentiable.
- Prevents gradient descent.
- Can we use a smooth activation function that behaves similar to a step function?
- Perceptron with a smooth activation function is called a neuron.
- Neural networks are also called multilayer perceptrons (MLP) even though they do not contain any perceptron.

Logistic Sigmoid Function

- For $a \in \mathbb{R}$, the logistic sigmoid function is given by $\sigma(a)=\frac{1}{1+e^{-a}}$
- Sigmoid means S-shaped.
- Maps $-\infty \leq a \leq \infty$ to the range $0 \leq \sigma \leq 1$. Also called squashing function.
- Can be treated as a probability value.
- Symmetry $\sigma(-a)=1-\sigma(a)$. Prove it.
- Easy derivative $\sigma^{\prime}=\sigma(1-\sigma)$. Prove it.

Activation Functions

Regression

- Univariate: use 1 output neuron with identity activation function $y(a)=a$.
- Multivariate: use K output neurons with identity activation functions $y\left(a_{k}\right)=a_{k}$.

Classification

- Binary: use 1 output neuron with logistic sigmoid $y(a)=\sigma(a)$.
- Multiclass: use K output neurons with softmax activation function.

Softmax Activation Function

- For real numbers a_{1}, \ldots, a_{K}, the softmax function is given by

$$
y\left(a_{k} ; a_{1}, a_{2}, \ldots, a_{K}\right)=\frac{e^{a_{k}}}{\sum_{i=1}^{K} e^{a_{i}}}
$$

- Output of k-th neuron depends on activations of all neurons in the same layer.
- Softmax is ≈ 1 when $a_{k} \gg a_{j} \forall j \neq k$ and ≈ 0 otherwise.

Softmax Activation Function

- Provides a smooth (differentiable) approximation to finding the index of the maximum element.
- Compute softmax for $1,10,100$.
- Does not work everytime.
- Compute softmax for $1,2,3$. Solution: multiply by 100 .
- Compute softmax for $1,10,1000$. Solution: subtract maximum before computing softmax.
- Also called the normalized exponential function.
- Since $0 \leq y_{k} \leq 1$ and $\sum_{k=1}^{K} y_{k}=1$, softmax outputs can be treated as probability values.
- Show that $\frac{\partial y_{k}}{\partial a_{j}}=y_{k}\left(\delta_{j k}-y_{j}\right)$ where $\delta_{j k}=1$ if $j=k$ and 0 otherwise.

