CS-568 Deep Learning

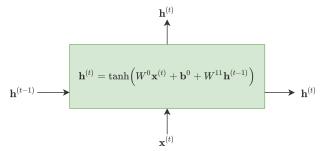
Nazar Khan

PUCIT

Long Short-Term Memory (LSTM)

Weakness of standard RNN

- We have already seen that RNNs do not possess long-term memory.
- Input at time t is soon forgotten because of the recurrent weights W^{11} .
- Would be nice to decide what and how much to forget/remember based on the input itself.



RNN Cell: Operations at the hidden layer.

Long Short-Term Memory (LSTM) Building blocks

Let
$$\mathbf{v}^{(t)} = \begin{bmatrix} \mathbf{h}^{(t-1)} \\ \mathbf{x}^{(t)} \end{bmatrix} \in \mathbb{R}^{(M+D) \times 1}$$

Perform 4 affine transformations of
$$\mathbf{v}^{(t)}$$
 followed by non-linearities.

$$\mathbf{f}^{(t)} = \sigma \left(W_f \mathbf{v}^{(t)} + \mathbf{b}_f \right)$$

$$\mathbf{i}^{(t)} = \sigma \left(W_i \mathbf{v}^{(t)} + \mathbf{b}_i \right)$$
$$\mathbf{o}^{(t)} = \sigma \left(W_0 \mathbf{v}^{(t)} + \mathbf{b}_0 \right)$$

$$\mathbf{o}^{(t)} = \sigma \left(W_o \mathbf{v}^{(t)} + \mathbf{b}_o
ight)$$
 $ilde{\mathbf{c}}^{(t)} = anh \left(W_c \mathbf{v}^{(t)} + \mathbf{b}_c
ight)$

All 4 matrices of size
$$M \times (M + D)$$
 and therefore all 4 transformations produce M -dimensional vectors.
Vectors $\mathbf{f}^{(t)}, \mathbf{i}^{(t)}, \mathbf{o}^{(t)}$ contain values in $(0,1)$ and $\tilde{\mathbf{c}}^{(t)}$ in $(-1,1)$.

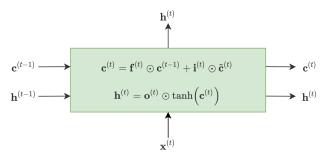
(2)

(1)

(3)

LSTM

Putting everything together



LSTM Cell: Operations at the hidden layer.

- ightharpoonup Vector $\mathbf{c}^{(t)}$ is interpreted as the cell state.
- Cell state is recurrent as well.
- Notice that $\mathbf{c}^{(t)}$ is not forced to contain values in (0,1) or (-1,1).

$$\mathbf{f}^{(t)} = \sigma \left(W_f \mathbf{v}^{(t)} + \mathbf{b}_f \right)$$
$$c_j^{(t)} = f_j^{(t)} c_j^{(t-1)} + i_j^{(t)} \tilde{c}_j^{(t)}$$

- $f_j^{(t)} \in (0,1)$ due to the logistic sigmoid.
- ▶ If $f_j^{(t)} = 0$, then $c_j^{(t-1)}$ is forgotten in the next state $c_j^{(t)}$.
- ▶ If $f_j^{(t)} = 1$, then $c_j^{(t-1)}$ is *retained completely* in the next state $c_j^{(t)}$.

 $\mathbf{f}^{(t)}$ acts as a forget gate on the previous cell state $\mathbf{c}^{(t)}$.

$$\mathbf{i}^{(t)} = \sigma \left(W_i \mathbf{v}^{(t)} + \mathbf{b}_i \right)$$
$$c_j^{(t)} = f_j^{(t)} c_j^{(t-1)} + i_j^{(t)} \tilde{c}_j^{(t)}$$

- $i_j^{(t)} \in (0,1)$ due to the logistic sigmoid.
- ▶ If $i_j^{(t)} = 0$, then no new information will be added to $c_j^{(t)}$.
- ▶ If $i_j^{(t)} = 1$, then the potential cell state $\tilde{c}_j^{(t)}$ is added completely in the next state $c_j^{(t)}$ irrespective of forget level.

 $\mathbf{i}^{(t)}$ acts as an input gate on the potential cell state $\tilde{\mathbf{c}}^{(t)}$.

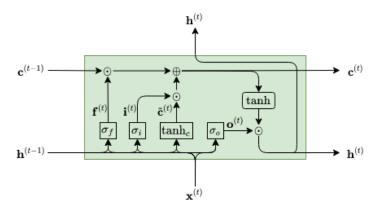
Role of the Gates o(t): Output Gate

$$egin{aligned} \mathbf{o}^{(t)} &= \sigma\left(W_o\mathbf{v}^{(t)} + \mathbf{b}_o
ight) \ h_j^{(t)} &= o_j^{(t)} anh(c_j^{(t)}) \end{aligned}$$

- $o_j^{(t)} \in (0,1)$ due to the logistic sigmoid.
- ▶ If $o_j^{(t)} = 0$, then cell state $c_j^{(t)}$ will be *completely hidden*.
- ▶ If $o_j^{(t)} = 1$, then cell state $c_j^{(t)}$ is *completely exposed* in both space (↑) and time (→).

 $\mathbf{o}^{(t)}$ acts as an output gate on $\mathbf{c}^{(t)}$.

LSTM



LSTM Cell: Operations at the hidden layer in detail.

Information flow

- \triangleright Depending on $\mathbf{f}^{(t)}$ and $\mathbf{i}^{(t)}$, an LSTM cell has the ability to push through its cell state $c^{(t-1)}$ exactly or almost unchanged into the next time step $c^{(t)}$
- ▶ This ensures *flow of the cell state (memory) through time*. Hence long-term memory.
- ▶ This is similar to how other deep learning techniques ensure flow of information in space.
 - ► ReLU
 - Weight initialization
 - Batchnorm
 - Residual block

- Consider a sentence containing brackets.
 - England (last year's winners) are expected to put up a good fight.
- ▶ The LSTM cell can learn to set $c_j = 1$ if an opening bracket is seen at time t.
- It can also learn to keep $c_j = 1$ for a long time until a closing bracket is seen in the input.
- ightharpoonup Some other c_k can similarly be used to handle nested brackets and so on.
- ightharpoonup Even the value of c_j itself can be used to signify the level of nesting. It all depends on how and what the LSTM learns.

Peephole Connections

 Allow gates to look at the cell state as well before deciding what to forget, what to add, and what to output.

$$\mathbf{v}_{f,i}^{(t)} = \begin{bmatrix} \mathbf{c}^{(t-1)} \\ \mathbf{h}^{(t-1)} \\ \mathbf{x}^{(t)} \end{bmatrix} \in \mathbb{R}^{(2M+D)\times 1}$$

$$\mathbf{v}_{o}^{(t)} = \begin{bmatrix} \mathbf{c}^{(t)} \\ \mathbf{h}^{(t-1)} \\ \mathbf{x}^{(t)} \end{bmatrix} \in \mathbb{R}^{(2M+D)\times 1}$$

Coupled forget and input

▶ Use a single forget gate for interpolation.

$$\mathbf{c}^{(t)} = \mathbf{f}^{(t)} \odot \mathbf{c}^{(t-1)} + (1 - \mathbf{f}^{(t)}) \odot \widetilde{\mathbf{c}}^{(t)}$$

► Fewer parameters due to removal of input gate.

Gated Recurrence Unit (GRU)

- Coupled forget and input gates.
- Merged hidden and cell state.

$$\begin{split} \mathbf{z}^{(t)} &= \sigma \left(W_z \mathbf{v}^{(t)} + \mathbf{b}_z \right) \\ \mathbf{r}^{(t)} &= \sigma \left(W_r \mathbf{v}^{(t)} + \mathbf{b}_r \right) \\ \tilde{\mathbf{h}}^{(t)} &= \tanh \left(W_h [\mathbf{r}^{(t)} \odot \mathbf{h}^{(t-1)}; \mathbf{x}^{(t)}] + \mathbf{b}_h \right) \\ \mathbf{h}^{(t)} &= \left(1 - \mathbf{z}^{(t)} \right) \odot \mathbf{h}^{(t-1)} + \mathbf{z}^{(t)} \odot \tilde{\mathbf{h}}^{(t)} \end{split}$$

- Always expose the hidden state.
- In some variants, the weight matrices can be set to 0.
- In other variants, the bias vectors can be set to 0.
- Fewer parameters, faster training, learn from lesser data.

Deep Learning