CS-568 Deep Learning

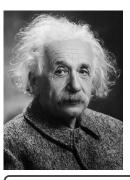
Nazar Khan

PUCIT

Recurrent Neural Networks

Fprop

/ariations



Everything should be made as simple as possible, but no simpler. Albert Einstein

Understanding Recurrent Neural Networks requires some effort and a correct perspective. Do not expect them to be as simple as linear regression.

Dynam	

J

rop

Variations

Benefit of Recurrence

Stability

Static vs. Dynamic Inputs

- Static signals, such as an image, do not change over time.
 - Ordered with respect to space.
 - Output depends on current input.
- Dynamic signals, such as text, audio, video or stock price change over time.
 - Ordered with respect to time.
 - Output depends on current input as well as past (or even future) inputs.
 - Also called temporal, sequential or time-series data.

vnamic		

Fprop

Variations

Benefit of Recurrence

Stability

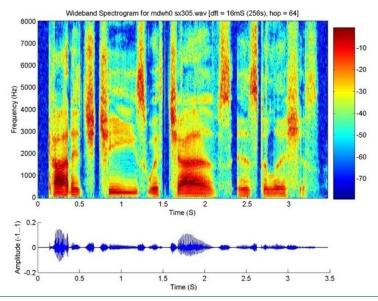
Context in Text

The Taj _____ was commissioned by Shah Jahan in 1631, to be built in the memory of ____ wife Mumtaz Mahal, who died on 17 June that year, giving birth to their 14th child, Gauhara Begum. Construction started in 1632, and the mausoleum was completed ____ 1643.

Context in Video



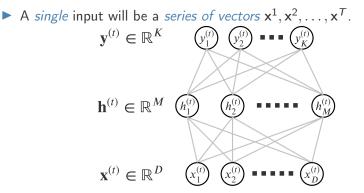
Context in Audio



Variations

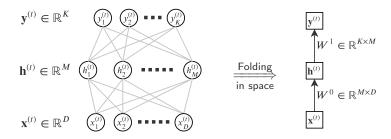
Benefit of Recurrence

Time-series Data



Input component at time *t* forward propagated through a network.

Representational Shortcut 1 – Space Folding



Each box represents a layer of neurons.

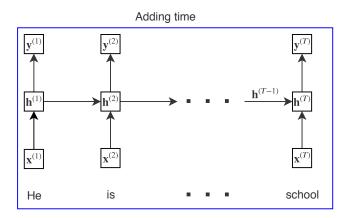
	F	٢N

1

rop

Variations

Recurrent Neural Networks



► A recurrent neural network (RNN) makes hidden state at time t directly dependent on the hidden state at time t − 1 and therefore indirectly on all previous times.

• Output \mathbf{y}_t depends on all that the network has already seen so far.

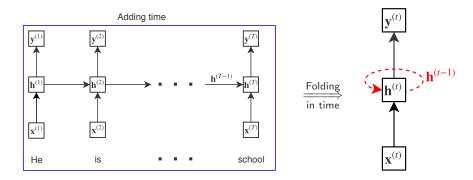
Fprop

Variations

Benefit of Recurrence

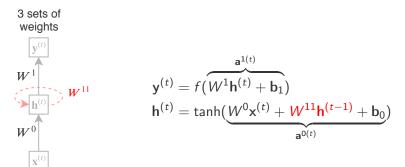
Stability

Representational Shortcut 2 – Time Folding

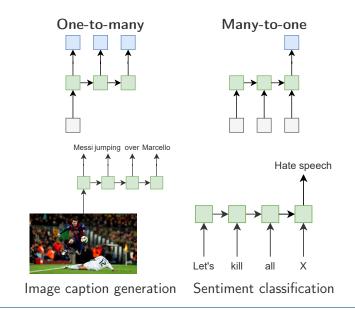


Dynamic Data	RNN		

Recurrent Neural Networks

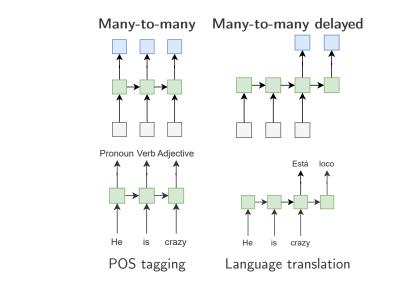


Sequence Mappings



Dynamic Data	RNN		

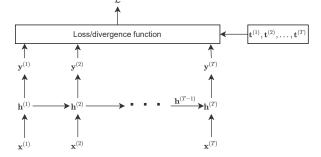
Sequence Mappings



Dynamic Data	RNN		

Loss Functions for Sequences

For recurrent nets, loss is between *series* of output and target vectors. That is $\mathcal{L}(\{\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(T)}\}, \{\mathbf{t}^{(1)}, \dots, \mathbf{t}^{(T)}\})$.



Forward propagation in an RNN unfolded in time.

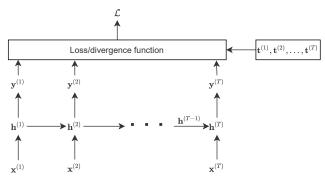
▶ Notice that loss \mathcal{L} can be computed only after $\mathbf{y}^{(T)}$ has been computed.

Dynamic Data	RNN		

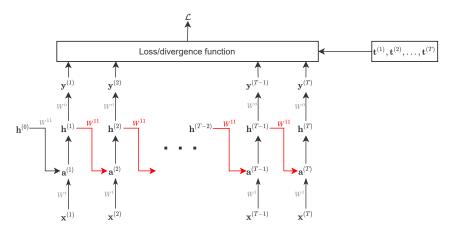
Stability

Loss Functions for Sequences

- ► Loss is *not necessarily* decomposable.
- ► In the following, we will assume decomposable loss $\mathcal{L} = \sum_{t=1}^{T} \mathcal{L}(\mathbf{y}^{(t)}, \mathbf{t}^{(t)}).$

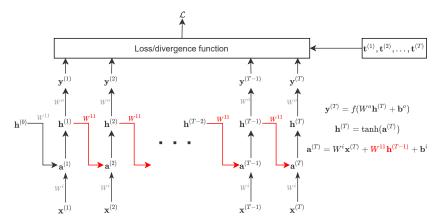


Forward Propagation Through Time



Forward propagation in an RNN unfolded in time. Recurrence between hidden states through pre-activation $\mathbf{a}^{(t)}$ is shown in red.

Forward Propagation Through Time



Forward propagation in an RNN unfolded in time. Recurrence between hidden states through pre-activation $\mathbf{a}^{(t)}$ is shown in red.

Variations

Benefit of Recurrence

 h^2

 W^1 , b

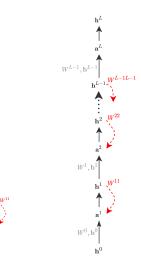
 W^0 , b

Stability

Notational Clarity

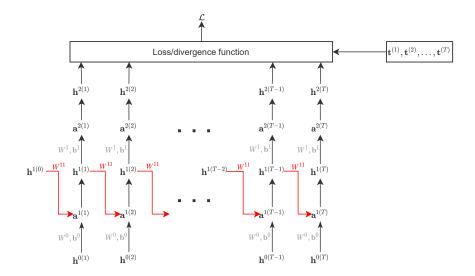
- At layer *I*, we will denote the pre-activation by a¹ and activation by h¹.
- So output layer y will be denoted by h^L in an L-layer network.
- lnput will be denoted by \mathbf{h}^0 .
- $\begin{array}{c} \blacktriangleright \quad \text{So forward propagation entails } \mathbf{h}^{0} \rightarrow \\ \underbrace{\mathbf{a}^{1} \rightarrow \mathbf{h}^{1}}_{\text{layer 1}} \cdots \rightarrow \underbrace{\mathbf{a}^{L-1} \rightarrow \mathbf{h}^{L-1}}_{\text{layer } L-1} \rightarrow \underbrace{\mathbf{a}^{L} \rightarrow \mathbf{h}^{L}}_{\text{layer } L} \end{array}$
- For 2 layer network

$$\mathbf{h}^{2,T} = f(\mathbf{a}^{2,T})$$
$$\mathbf{a}^{2,T} = W^{1}\mathbf{h}^{1,T} + \mathbf{b}^{1}$$
$$\mathbf{h}^{1,T} = \tanh(\mathbf{a}^{1,T})$$
$$\mathbf{a}^{1,T} = W^{0}\mathbf{h}^{0,T} + W^{11}\mathbf{h}^{1,T-1} + \mathbf{b}^{0}$$

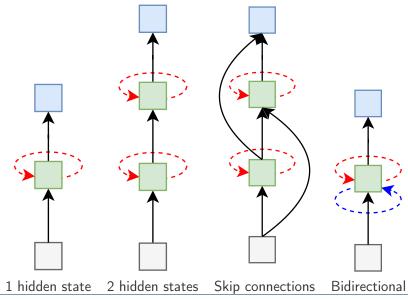


Dynamic Data	Fprop		

Notational Clarity

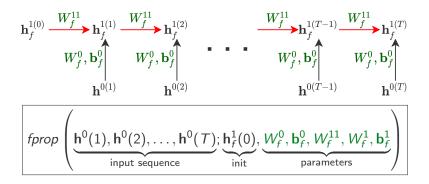


RNN Variations

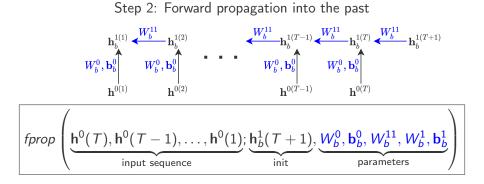


Deep Learning

Bidirectional RNN

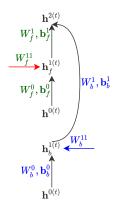


Bidirectional RNN



Bidirectional RNN

Step 3: Fusion of forward and backward hidden states



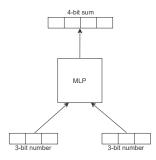
$$\begin{split} \mathbf{h}^{2(t)} &= \tanh(\mathbf{a}^{2(t)})\\ \mathbf{a}^{2(t)} &= W_f^1 \mathbf{h}_f^{1(t)} + \mathbf{b}_f^1 + W_b^1 \mathbf{h}_b^{1(t)} + \mathbf{b}_b^1 \end{split}$$

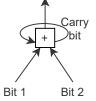
V. I

prop

Variations

Benefit of Recurrent Architectures *n*-bit addition





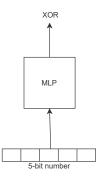
- Iterative application to numbers of arbitrary size
 - Exact answers

- Only for *n*-bit numbers
- Training set exponential in n
- Training errors

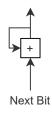
prop

Variations

Benefit of Recurrent Architectures *n*-bit XOR



- Only for *n*-bit numbers
- Training set exponential in n
- Training errors



- Iterative application to numbers of arbitrary size
- Exact answer
- Will be 1 for odd number of ones in input.

prop

Stability issues

- Even a 1-hidden layer RNN is a very deep network.
- Viewed in time, an RNN is as deep as the number of time steps.
- Suffers from vanishing gradients.
- Also suffers from *exploding gradients*.

Fprop

Exploding Gradients

- Consider input $x^{(1)}$ at time 1 and *assume linear* hidden layer.
- ► At time *t*, the RNN carries a term of the form

$$W^{11} \dots W^{11} W^0 \mathbf{x}^{(1)} = (W^{11})^{t-1} W^0 \mathbf{x}^{(1)}$$

which is an *M*-dimensional vector.

- Magnitude of this vector depends on largest eigenvalue λ_{max} of W¹¹.
 λ_{max} > 1 ⇒ magnitude of (W¹¹)^{t-1} W⁰x⁽¹⁾ keeps increasing.
 - ► $\lambda_{\max} < 1 \implies$ magnitude of $(W^{11})^{t-1} W^0 \mathbf{x}^{(1)}$ keeps decreasing.

prop

Exploding Gradients

- Even during forward propagation, depending on the largest eigenvalue of the recurrent weight matrix W^{11} , input at time t
 - is either forgotten very soon,
 - or explodes to very large values.
- Similar case for backpropagation.
- Notice that this has nothing to do with the choice of activation function.
- Information will explode or vanish through time.
- Similar behaviour for non-linear neurons.
- So, in practice, RNNs do not have long-term memory. Solution: LSTM.