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Probability Space

In this lecture pay a close attention to the following concepts:

• Random experiment: An experiment whose outcome is unpredictable.
Or, if we repeatedly perform the same experiment under the same (similar)
circumstances, the outcome does not necessarily turn out to be the same.
Each repetition of an experiment is called a trial. For instance if we roll a
standard die to observe which face shows up, then the experiment is random
because which face shows up varies unpredictably from trial to trial.

• Sample Space: The collection of all possible outcomes of the random exper-
iment, denoted by S. For example, the sample space associated with rolling
a standard die is S = {1, 2, 3, 4, 5, 6}.

• Event: A description (expressed in words or symbols) of those outcomes
of the random experiment that we are interested in. An event is always a
subset of the sample space, denoted by the capital letters A, B, C, etc. For
example, for the rolling a standard die experiment, and event is “an even
face will show up”. We can also write this event as the subset A = {2, 4, 6}
of the sample space. B = {5, 6} is another example of an event for the same
random experiment.

• Making more events: By using the “∪” (union) or “∩” (intersection) or
“c” (complement) operations of sets, we can make more events from the
same sample space. For example, for the roll of a standard die experiment if
A = {2, 4, 6} is an event then Ac = 1, 3, 5} is another event.

• Event occurs: The statement “A occurs” means that one of the elements
of A was the outcome when the random experiment was performed. For
example, if A = {2, 4, 6} occurs then it simply means that either the face ‘2’
showed up or face ‘4’ showed up or face ‘6’ showed up. So, the event “A∪B
occurred” would mean that the outcome of the experiment happened to be
either in A or in B or in both. On the other hand, “A ∩B occurred” would
mean that the outcome of the experiment was in fact both in A and in B.

Using the above concepts our main goal is to assign a “likelihood” (also called
probability) to the occurrences of various events. If A is an event then P(A) will
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denote the likelihood of occurrence of A. A few techniques of assigning this likeli-
hood are:

• (i) The empirical approach, (a verification procedure).

• (ii) The counting approach, (proposed by Cardano in 1560).

• (iii) The measuring lengths/areas/volumes approach, (analogs of Cardano’s).

• (iv) The independence approach.

1.1 The Empirical Approach

A simple and intuitive approach that approximates the probability of an event
occurs involves gaining some experience by performing the experiment over and
over again and recording its frequency. This is called the empirical approach.

Consider the experiment of tossing four coins and observing the faces that show
up on the four coins. We want to estimate the probability of observing exactly three
heads. To estimate this probability, we just toss the four coins a large number
of times (say 200 times) and see how often exactly three heads occur! When I
actually performed this experiment 200 times, on 56 occasions I observed exactly
three heads. According to the frequency interpretation of probability, our estimate
of the likelihood of observing three heads from four coins is 56

200 = 0.28. This ratio
is called a relative frequency and it approximates the probability of the event.

When we repeat the experiment more often, the relative frequencies tend to
settle down. For instance, when I programmed my computer to perform the same
experiment 1000 times, the relative frequency was 236

1000 = 0.236. After 100,000 rep-

etitions, the relative frequency of the event was 24,887
100,000 = 0.24887, which seems to

be converging towards 0.25. Figure 1.1 provides four simulation runs using N num-
ber of trials. Our relative frequencies did not remain the same (due to the random
nature). A remarkable fact, however, is that our relative frequencies will converge
to a value1 for sure. This limiting value is called the probability of the event. The
inconvenient aspect of this (empirical) approach is that we have to repeat the exper-
iment a large number of times. Would it not be great if we could find the limiting
value without performing the random experiment even once? Well, sometimes we
can!

Example - 1.1.1 - (3 heads in 4 tosses — another perspective) The above
empirical approach of assigning probability to an event requires large number of
repetitions. Here is a simpler way. The sample space for the experiment of tossing
four coins has 16 elements as listed below.

S =







HHHH, HHHT, HHTH, HTHH,
THHH, HHTT, HTHT, THHT,
TTHH, THTH, HTTH, TTTH,
TTHT, THTT, HTTT, TTTT







.

1This is due to a result known as the Law of Large Numbers. One of the “self-cleansing”
or self-rejuvenating aspect of this course is that we will build enough (math) tools to prove
the law.
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Figure 1.1: Relative Frequencies of 3 Heads in 4 Tosses.

The event, A, of observing exactly three heads in the four tosses is the following
subset of S,

A = {HHHT, HHTH, HTHH, THHH}.
Just by shear luck we notice that the limiting value obtained by the empirical
approach of the last example, namely 0.25, happens to be the same as

P(A) =
number of elements of A

number of elements of S
=

4

16
= 0.25.

The issue is will the counting approach always give us the limiting value? Unfor-
tunately, the answer is no! This counting approach works only sometimes. We will
learn more about this in later lectures.

1.2 Axioms of Probability Theory

Regardless of how P(A) is calculated or approximated, it must follow the condition

0 ≤ P(A) ≤ 1 (2.1)

since the probability is always some sort of a percentage and percentages lie between
0 and 1. Also, since the sample space, S, must always occur, we should always have

P(S) = 1. (2.2)
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If we break up an event into disjoint pieces, the total probability should be the
same as adding the individual pieces’ probabilities. Symbolically, if the event E is
broken up into disjoint parts, A,B,C, · · · , then

P(E) = P(A ∪B ∪ C ∪ · · · ) = P(A) + P(B) + P(C) + · · · (2.3)

The above three conditions constitute the official definition of a probability
function P and form the fundamental axioms of probability theory. All thousands
of books of probability theory that you see in the libraries are based on these three
“innocent looking” axioms. It so happens that these axioms are not so innocent
looking after all. They automatically give many more results. As an example the
following theorem collects a few consequences of (2.1), (2.2), and (2.3).

Theorem - 1.2.1 - (Workhorse) Let S be a sample space and let P be a proba-
bility function for the events of this sample space. If A,B are two events, then the
following results hold:

• (i) P(∅) = 0, (impossibility rule)

• (ii) P(Ac) = 1− P(A), (complement rule)

• (iii) P(Ac ∩B) = P(B)− P(A ∩B), (general complement rule)

• (iv) P(A ∪ B) = P(A) + P(B)− P(A ∩B), (union rule)

• (v) if A ⊆ B then P(A) ≤ P(B), (monotonicity).

Proof: (i) Since ∅ ∪ S = S, and ∅ and S are disjoint, by axiom (2.3) of P we see
that

P(∅) + P(S) = P(∅ ∪ S) = P(S) = 1,

the last statement from axiom (2.2) of P. That is,

P(∅) + 1 = 1.

This gives P(∅) = 0. Now the reader should prove the rest of the parts. ♠

Remark - 1.2.1 - (Sigma field) A sharp observer should note that axioms (2.1),
(2.2), and (2.3), and Theorem 1.2.1 require that the word “event” be defined a bit
more carefully so that

(a) S should always be considered both as the sample space, and as an event.

(b) If A is an event then Ac should also be considered an event.

(c) If A,B,C, · · · are events then their union must also be considered as an event.

These requirements will be taken for granted through out this book. It will be
helpful to imagine all the events to be put into a large box (i.e., a box full of
events). This box full of events must obey the above conditions (a), (b), and (c).
Any such box obeying these three conditions is called a sigma field of subsets of S.
We will not emphasize this word in this book.
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Example - 1.2.1 - If P(A ∪B) = 0.6 and P(A ∪Bc) = 0.8 find P(A).

Note that (A ∪ B) ∪ (A ∪ Bc) ⊇ B ∪ Bc = S, where S is the sample space. Also,
note that (A ∪B) ∩ (A ∪ Bc) = A. Therefore, we have

1 = P(S) = P((A ∪B) ∪ (A ∪ Bc))

= P(A ∪B) + P(A ∪Bc) − P((A ∪B) ∩ (A ∪Bc))

= P(A ∪B) + P(A ∪Bc) − P(A).

Therefore, we see that

P(A) = P(A ∪B) + P(A ∪Bc) − 1 = 0.6 + 0.8− 1 = 0.4.

Example - 1.2.2 - Argue why

P(A ∩B) ≤ min{P(A),P(B)} ≤ max{P(A),P(B)} ≤ P(A ∪B).

The first inequality follows from the fact that A ∩ B ⊆ A, as well as A ∩ B ⊆ B.
The monotonicity property of probability (c.f. Theorem 1.2.1, part (v)) gives that
P(A ∩ B) ≤ P(A) as well as P(A ∩ B) ≤ P(B). Hence, P(A ∩ B) is smaller (no
larger) than both P(A) and P(B), giving the first inequality. The second inequality
is trivial. The third inequality is a consequence of the facts that A ⊆ A ∪ B, and
B ⊆ A ∪B, and the monotonicity property of probability.

Example - 1.2.3 - A student assigned probabilities of events A,B as follows

P(B) = 0.3, P(A ∪Bc) = 0.6.

What is P(A)?
Using properties (iv), (iii) and (ii) of the last theorem we see that

0.6 = P(A ∪Bc) = P(A) + P(Bc)− P(A ∩ Bc), by (iv),

= P(A) + P(Bc)− P(A) + P(A ∩ B), by (iii),

= P(Bc) + P(A ∩ B) = (1− 0.3) + P(A ∩B), by (ii).

Therefore, P(A∩B) = 0.6−0.7 = −0.1. This contradicts axiom (2.1), meaning the
assignment was flawed. This shows that one cannot assign probabilities to various
events arbitrarily.

Remark - 1.2.2 - (Summary) In this lecture we have presented the definition of
P(A), i.e., obeying three axioms, (2.1), (2.2), and (2.3). As their consequences
these three axioms then led to a bunch of more axioms collected in Theorem 1.2.1.
We noticed that the general probability statements that will always be true are

P(S) = 1, (certainty rule) P(∅) = 0, (impossibility rule).

What is still not fully settled is how does one go about and assign

P(A) to any other arbitrary event A?

This is a modeling issue since usually there are infinitely many ways such assign-
ments can be made. The next three lectures present such assignment techniques
that do not violate any of the axioms of probability theory.
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1.3 Exercises

Exercise - 1.3.1 - Use simulation to find an approximation of the probability of
getting at least one double six in six rolls of a pair of fair dice.

Exercise - 1.3.2 - Prove parts (ii) through (v) of Theorem 1.2.1.

Exercise - 1.3.3 - Consider the experiment of tossing four fair coins and observing
the outcome. List all the elements of the sample space. Give two examples of event
spaces.

Exercise - 1.3.4 - For Exercise 1.3.3 define probability function P over the classes
of events of your choice.

Exercise - 1.3.5 - Show that the probability of at least one of the three events,
A,B,C, will occur is

P(A) + P(B) + P(C)− P(A ∩ B)− P(A ∩ C) − P(B ∩ C) + P(A ∩B ∩ C).

Exercise - 1.3.6 - For any events A1, A2, · · · , verify that

1−
∞X

i=1

(1− P(Ai)) ≤ P (∩∞
i=1Ai) .

Exercise - 1.3.7 - Let S = {a, b, c} be a sample space with the power set as the
class of events. Let P({a}) = 1

4 , P({b}) = 1
3 . Find P({c}) and P({a, c}).

Exercise - 1.3.8 - Let S = {a, b, c, d} be a sample space such that P({a}) =
P({b}) = 1

4 and P({c}) = 2P({d}). Find the probability function P.

Exercise - 1.3.9 - Is it possible to have an assignment of probabilities in some
random experiment such that P(A) = 1

2 , P(B) = 1
4 and P(A ∩ B) = 1

3?

Exercise - 1.3.10 - What is the maximum possible value of P(A ∩ B) when P(A)
and P(B) are fixed?

Exercise - 1.3.11 - Prove that P(A ∩ B) ≥ P(A) + P(B)− 1.

Exercise - 1.3.12 - If we know that P(A ∪ B) = 2/3 and P(A ∩ B) = 1/3, can we
determine P(A) and P(B) ?

Exercise - 1.3.13 - Consider two events A and B such that P(A) = 1/3 and P(B) =
1/2. Determine the value of P(B ∩ Ac) for each of the following conditions: (a) A
and B are disjoint, (b) A ⊂ B, (c) P(A ∩B) = 1/8.

Exercise - 1.3.14 - A die has been loaded so that the probability of a particular
number coming up is proportional to that number. Compute (i) the probabilities
of all the singleton events, (ii) the probability that an even number will occur, (iii)
the probability that a number greater than 4 will occur.
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