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Random Variables, Densities
& Distributions

Often we are not interested in the details of the random experiment or its resulting
probability space S, per se. Instead, we may be interested only in a particular
quantifiable feature of the outcomes.

For instance, an insurance company may not care much about the underlying
probability space when it sells an auto insurance policy to a customer. It may only
be interested in the number of accidents, or loss per accident, the policy holder will
have during the lifetime of the policy. These are quantifiable features even though
the underlying probability space may be extremely complex.

Random variables help us collect the probabilities of such a quantifiable feature
from any probability space. For the insurance example the company may need to
compute

P(policy holder will have no accident),

P(policy holder will have one accident),

P(policy holder will have two accidents), et cetera.

The company would like to have all these probabilities in hand in advance so that
they can figure out what premiums they should charge the client. A collection of all
these probabilities associated to a random variable can be displayed by a function,
called its density.

A random variable (rv) is itself a real valued function defined over a sample
space S. It automatically creates several related concepts, whether we use them or
not. So, the study of a random variable involves studying all these related concepts
that the random variable creates, five of which are listed below.

• (i) As a real valued function over S (i.e., the definition of an rv).

• (ii) As a numerically labeled partition of the sample space S.

• (iii) The density of the random variable, which presents the probabilities of
the partitioning events created by the random variable.
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• (iv) The cumulative distribution function (cdf) that the random variable pro-
duces.

• (v) As a random draw from a particular population of numbers (perhaps con-
structed artificially).

So think of an rv as not an octopus but rather a “pentapus”.

5.1 Discrete Random Variables

A random variable is nothing but an assignment of numbers (i.e., a numerical valued
function) to all the outcomes of the random experiment.

Example - 5.1.1 - (Random variable as a real valued function) Consider the
sample space, S, consisting of all possible outcomes of four tosses of a coin. That
is,

S =







HHHH, HHHT, HHTH, HTHH,
THHH, HHTT, HTHT, THHT,
TTHH, THTH, HTTH, TTTH,
TTHT, THTT, HTTT, TTTT







.

Question: which outcome of this sample space do you like the most?
Obviously, unless we bring in some preference mechanism, the question is vague

and uninteresting. But if I inform you that, if you perform this random experiment
once, I will give you as many dollars as the number of heads in the outcome you
observe, then the obvious answer to the question is the outcome HHHH. You will
hate to observe the outcome TTTT . How do you compare the outcomes

TTTH, TTHT, THTT, HTTT?

You don’t! You attach the same importance to each of these four outcomes. This
numerical ranking is best captured by a random variable. The random variable
labels each outcome by the amount of money it will generate, as collect below.

HHHH → 4 HHHT → 3 HHTH → 3 HTHH → 3
THHH → 3 HHTT → 2 HTHT → 2 THHT → 2
TTHH → 2 THTH → 2 HTTH → 2 TTTH → 1
TTHT → 1 THTT → 1 HTTT → 1 TTTT → 0.

By the way, we usually denote a random variable (function) by any one of the last
few capital letters of the English alphabet, such as X or Y or Z or W etc. So
the above view of a random variable, say X, is nothing but a real-valued function
defined on the sample space S describing the amount generated by the random
experiment. The next example provides a slightly different perspective.

Example - 5.1.2 - (The partition created by a random variable) For the
random variableX of the last example X(TTTT ) = 0. In other words, X = 0 if and
only if the outcome TTTT occurs. In inverse image notation X−1(0) = {TTTT}.
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5.1 Discrete Random Variables 43

Probabilists usually abbreviate this by writing {X = 0}. Similarly, {X = 1} stands
for the event

{TTTH, TTHT, THTT, HTTT},
since X(TTTH) = 1 and X(TTHT ) = 1 and so on.

Continuing this way, we obtain a partition of S that the random variable, X,

has created. The components of this partition are as follows:

{X = 0} = {TTTT},
{X = 1} = {TTTH, TTHT, THTT, HTTT},
{X = 2} = {HHTT, HTHT, THHT, TTHH, THTH, HTTH},
{X = 3} = {HHHT, HHTH, HTHH, THHH},
{X = 4} = {HHHH}.

Every random variable creates a partition of the associated sample space S. You
should have notice that so far the concept of probability has not come under dis-
cussion. The next example gives yet another perspective of a random variable by
bringing probabilities of the partitioning events into focus.

Example - 5.1.3 - (The density created by a random variable) Consider the
last example one more time. The event {X = 2}, i.e., “the experiment will yield 2
dollars” is the same event as

{X = 2} = {HHTT, HTHT, THHT, TTHH, THTH, HTTH} .

Hence, we immediately see that, when the coin is fair, (by using the counting
technique of computing probabilities)

P(X = 2) =
6

16
=

3

8
.

The same reasoning gives us the probabilities of all the numerical labels (rankings):

P(X = 0) =
1

16
, P(X = 1) =

4

16
, P(X = 2) =

6

16
,

P(X = 3) =
4

16
, P(X = 4) =

1

16
.

The collection of all the values (labels) that X used (which form the range of the
function X), along with probabilities of their corresponding events, constitutes the
density1 of the random variable. Here is this density of X in a tabular form.

Values of X 0 1 2 3 4

Probabilities 1
16

4
16

6
16

4
16

1
16

1This kind of density is also called a probability mass function in some text books.
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Example - 5.1.4 - Let us consider
another example. Suppose we roll
two fair dice and note the two faces
that come up. In this case, the
sample space consists of 36 ele-
ments. Suppose we were only in-
terested in knowing probabilities of
certain events which deal with the
sum of the two face values that
come up on the two dice. In this
case our random variable X mea-

(6,5)(6,4)(6,3)(6,2)(6,1)

(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)

(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)

(6,6)

(3,6)

(1,1)

(3,5)(3,4)(3,3)(3,2)(3,1)

(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)

(1,2) (1,6)(1,5)(1,4)(1,3)

sures the sum of the two face values. As a function, the random variable X can be
stated as

X(i, j) = i+ j,

where i = outcome of first die, and j = outcome of second die. Note that the event
{X = 2} is the same as the event {(1, 1)} in the original sample space and the
event {X = 3} is the same event as {(1, 2), (2, 1)} and so on.

The partition of S that X created is as follows:

{X = 2} = {(1, 1)}
{X = 3} = {(1, 2), (2, 1)}
{X = 4} = {(1, 3), (2, 2), (3, 1)}
{X = 5} = {(1, 4), (2, 3), (3, 2), (4, 1)}
{X = 6} = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
{X = 7} = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
{X = 8} = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
{X = 9} = {(3, 6), (4, 5), (5, 4), (6, 3)}
{X = 10} = {(4, 6), (5, 5), (6, 4)}
{X = 11} = {(5, 6), (6, 5)}
{X = 12} = {(6, 6)} .

The density that X created, of course, is

Values of X 2 3 4 5 6 7 8 9 10 11 12

Probabilities 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Once the density of X is in our hand, we no longer have to go back to the
sample space to find the probabilities of these events. This is the main benefit of
having the density of a random variable.

Remark - 5.1.1 - (Caution: Density vs relative frequency distribution) In
the last two examples we obtained the densities without rolling a die or tossing a
coin. Conceptual understanding of the rules of probability were enough! Had we
tossed the coin or rolled the die (i.e. performed the experiment) a large number of
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5.1 Discrete Random Variables 45

times, we would have obtained the data distribution written as a relative frequency-
distribution. The density and the relative frequency distribution differ the same
way as the relative frequency of an event and its probability differed (as explained
in earlier lectures). The density being a limiting form of the relative frequency
distribution.

A computer rolled a pair of fair dice 10,000 times and obtained the following
relative frequency distribution of the sum of the two face values. The last column
gives the exact values of the density in fractions for comparison purposes.

Values Relative
of X Frequencies Probabilities

2 0.0256 0.0278 = 1/36
3 0.0565 0.0556 = 2/36
4 0.0858 0.0833 = 3/36
5 0.1120 0.1111 = 4/36
6 0.1367 0.1389 = 5/36
7 0.1650 0.1667 = 6/36
8 0.1376 0.1389 = 5/36
9 0.1147 0.1111 = 4/36
10 0.0820 0.0833 = 3/36
11 0.0554 0.0556 = 2/36
12 0.0287 0.0278 = 1/36

Our relative frequencies are close to the actual values of the density. The moral
of the story is that once we have the density of a random variable in our hand, we
do not have to perform the random experiment at all to find the probabilities of
various events since we know how the relative frequencies will behave, more or less.

Definition - 5.1.1 - (A discrete rv & its density) Let S be a sample space. A
discrete random variable, X, is a numerical valued function over S which partitions
the sample space S into countably many disjoint events. The discrete probability
density2 of the random variable consists of two arrays of numbers, a1, a2, · · · ,
representing all the distinct values of the range of X, and their corresponding
probabilities, p1, p2, · · · , such that

• all p1, p2, · · · , are nonnegative numbers, and

• p1 + p2 + · · · = 1.

We call p1 the probability assigned to a1, and represent this association by writing
P(X = a1) = p1. Similarly, p2 is called the probability assigned to a2, written as
P(X = a2) = p2, etc. This information is sometimes presented in a tabular form:

Values of X a1 a2 a3 · · · an · · ·
Probabilities p1 p2 p3 · · · pn · · ·

2Also known as a probability mass function, or a probability distribution or just a
density.
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If A is a subset of the real line, the probability, P(X ∈ A), is obtained by adding
the p’s that are assigned to the a’s lying in A. That is,

P(X ∈ A) =
X

a∈A

P(X = a).

Example - 5.1.5 - For the random variable X of the last example of rolling two
fair dice and observing the sum of the face values, P(X ≥ 10) = 3

36 + 2
36 + 1

36 = 1
6 .

5.2 The Cumulative Distribution Function (cdf)

The cumulative distribution function (cdf) of a discrete random variable X is a
function defined over the whole real line as follows:

F (t) := P(X ≤ t) =
X

a: a≤t

P(X = a), −∞ < t < ∞.

Note F (t) is always a nondecreasing function of t, and 0 ≤ F (t) ≤ 1.

Example - 5.2.1 - Consider the random variable X of Example 5.1.3 counting the
total number of heads when a fair coin is tossed four times. From its density we
see that its cdf is

F (t) =







0 if t < 0,
1
16 if 0 ≤ t < 1,

1
16 + 4

16 = 5
16 if 1 ≤ t < 2,

1
16 + 4

16 + 6
16 = 11

16 if 2 ≤ t < 3,

1
16 + 4

16 + 6
16 + 4

16 = 15
16 if 3 ≤ t < 4,

1 if t ≥ 4.

Both the density and the cdf can be plotted as shown below. The density is just

0 1 2 3 4

1
16

4
16

6
16 4

16 1
16

t

F (t)

0 1 2 3 4

1
16

5
16

11
16

15
16

16
16

Figure 5.1: The Density and the Cumulative Distribution Function.

a “stick graph”, where the height of each stick is the probability amount. The
location of the stick is the corresponding value of the random variable.
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5.2 The Cumulative Distribution Function (cdf) 47

Example - 5.2.2 - (The secretary problem revisited) Consider the secretary’s
matching problem, Example 2.1.4, once again. We have n letters and their corre-
sponding n envelopes. Letters are placed into the envelopes randomly. We would
like to know the likelihoods of the number of letters which will go into their own
envelopes. Define the random variable

X := the number of correctly placed letters.

In this case, to obtain the density one needs sophisticated counting methods. How-
ever, when n is small, by listing all the outcomes and using equally likely sample
spaces, one can find the density of this random variable.

For example, when we have n = 3 letters along with three corresponding en-
velopes addressed to Tom, Dick and Harry, then there are six possible ways of
putting the letters into the envelopes. By direct enumeration the reader can verify
that P(X = 0) = 2

6 , P(X = 1) = 3
6 , etc., giving the density

Values of X 0 1 2 3

Probabilities 2
6

3
6 0 1

6

When we have n = 5 letters, there are 5! = 120 possible ways we can put the
5 letters into the 5 envelopes, so S has 120 outcomes. Let X5 be the number of
correctly placed letters. The density of X5 can be enumerated similarly:

Values of X5 0 1 2 3 4 5

Probabilities 44
120

45
120

20
120

10
120 0 1

120

A stick graph plot of the density is shown below. The cumulative distribution

0 1 2 3 4 5

44
120

45
120 20

120 10
120 1

120

function (cdf) is useful, for instance, to compute the probability that the majority
of the recipients got their own letters is

P(X5 ≥ 3) =
10

120
+ 0 +

1

120
=

11

120
= 0.09.

Note that the event {X5 ≥ 3} stands for “3 or more people, among the 5 people,
received their own letters”. So,

F (2) = P(X5 ≤ 2) = 1− P(X5 > 2) = 1− P(X5 ≥ 3) = 0.91.

If we were asked to predict the likelihood of at most one person receiving his letter
then the event is {X ≤ 1} with probability

F (1) = P(X5 = 0) + P(X5 = 1) =
44

120
+

45

120
=

89

120
≈ 0.7416.
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So, there is about 75% chance that at most one person will get his letter. The cdf
of this random variable is as follows.

F (t) =







0 if t < 0,

44
120 if 0 ≤ t < 1,

44
120 + 45

120 = 89
120 if 1 ≤ t < 2,

44
120 + 45

120 + 20
120 = 109

120 if 2 ≤ t < 3,

44
120 + 45

120 + 20
120 + 10

120 = 119
120 if 3 ≤ t < 5,

1 if 5 ≤ t.

Its plot is shown below. The reader should see how the density can be pulled out
of the cdf, making the two concepts equivalent.

t

F (t)

0 1 2 3 4 5

44
120

89
120

109
120

119
120 1

Definition - 5.2.1 - (The distribution function) The distribution function (or
cumulative distribution function, cdf) of any random variable, X, is

F (t) = P(X ≤ t), t ∈ IR.

For some random variables one can write F (t) in a closed form, but for many we
cannot do so. A function F (t) is the cdf of a discrete random variable if and only
if it has the following properties:

• F (t) is a nondecreasing function of t,

• F (−∞) = limx→−∞ F (x) = 0, F (∞) = limx→+∞ F (x) = 1,

• F (t) is a right continuous function,

• There exists a countable set Δ of real numbers so that P(X = a) = F (a) −
F (a−) > 0, for any a ∈ Δ and

P

a∈Δ P(X = a) = 1.

Remark - 5.2.1 - (Random selection from a population) Now we give another
view of a random variable and its density. Consider tossing four fair coins and
observing the number of heads that appear. The resulting random variable, say X,
has the following density

Values of X 0 1 2 3 4

Probabilities 1
16

4
16

6
16

4
16

1
16

Now consider another experiment in which sixteen identically shaped marbles are
placed in a box, one marble is labeled 0, four marbles are labeled 1, six marbles
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5.2 The Cumulative Distribution Function (cdf) 49

are labeled 2, four marbles are labeled 3, and one marble is labeled 4. We reach in
and randomly draw one marble and note its value, denote it by Y . The collection
of all the numbered marbles is our population

Population = {0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4} .

It is clear that the density of Y is the same as the above density of X.
Note that when I perform the four-coin experiment and obtain my X and you

perform the random-draw experiment and you get your Y , most likely we will not
get the same number. That is,

X 6= Y.

But what is true is that X has the same density (distribution) as Y . This type of
distributional equivalence is denoted by the ∼ symbol, i.e.,

X ∼ Y,

and we say that X and Y are identically distributed. As far as probability of
events is concerned, it is irrelevant which of the two types of experiments we are
imagining. This redundancy/diversity of random experiments which lead to the
same probability distribution points towards why probability theory has extremely
rich fields of applications.

In the field of Statistics, this random draw version is quite popular and statisti-
cians call the randomly drawn random variable, Y , as a sample from the population.
In this case a sample of size 1 since we drew only once.

If we draw and get, say Y1, and put the marble back into the population and
draw again, we get another random variable, say Y2. Note that

Y1 ∼ Y2.

In this case we have a sample of size two, namely Y1, Y2. We can draw larger
samples if we continue this process. Of course if we do not replace the marble we
drew on the first draw and then obtain the second marble and read its number, say
Z, then Z will not have the same distribution as Y . That is,

Y 6∼ Z.

Sampling with replacement and sampling without replacement are two of the most
popular sampling techniques of statistics. However, there are literally hundreds of
other types of sampling techniques (which we will not go into).

Remark - 5.2.2 - (Urn models) When a random variable, X, takes only finitely
many values, with probabilities that are rational numbers, we can always construct
an artificial random experiment involving an urn containing certain number of
identical looking slips of paper (or ping-pong balls). Each slip has a number written
on it. We reach in and draw a slip at random. The resulting random variable Y
that records the number obtained from the drawn slip, can be made to have the
same density as X.

You might wonder why is this interesting? Well, modern day computers can
be programmed to act like an urn and do the random drawing — over and over
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again —. The moral of the story is that extremely complex random phenomena,
such as weather forecasting, nuclear reactor safety, atomic weapons testing, trends
in social attitudes, etc., can be studied quickly, safely and economically with this
simple urn model artifact. There are books devoted to this topic, see for instance
[36] and [61].

Yet another and much deeper moral of the above story is that, as far as prob-
ability statements are concerned, knowing the actual sample space is irrelevant.
Having a random variable with an appropriate density/cdf is all that is needed to
deal with probabilistic statements. This is how modeling comes into the picture. A
correct model of any random phenomenon is judged by the accuracy of the result-
ing density/cdf. This is how Maxwell came up with the ideal gas law. We do not
claim that the mathematical framework that Maxwell concocted is exactly how gas
molecules behave. Why the model is accepted is that the density/cdf it provides
matches with the experimentally observed data extremely well. No one really cares
about the actual sample space that Maxwell’s model sits on.

Remark - 5.2.3 - (Which way to view a random variable?) For many random
variables all five ways of expressing a random variable can be studied interchange-
ably. However, for the other random variables this is not possible due to some
mathematical issues and we then resort to paying more attention to the aspect
which we can deal with easily.

5.3 Exercises

Exercise - 5.3.1 - With the help of a computer, perform an experiment of tossing
four fair coins 20, 000 times. Then write the relative frequency table of the number
of heads observed.

Exercise - 5.3.2 - For Exercise 5.3.1, provide the exact density of number of heads
observed. How does it compare with your relative frequency table?

Exercise - 5.3.3 - Let S be the sample space representing the outcomes of three
tosses of a weighted coin for which “H” is three times as likely as a “T”. Take the
power set, P(S), as the class of events. Let X be a random variable that equals
the largest number of successive heads in the outcome. For instance, X(HHT ) = 2
and X(HTH) = 1. Find the density of X.

Exercise - 5.3.4 - Which of the following tables represent densities? Explain.

Values of X −1 0 1
Probabilities 1

3
1
2

1
3

Values of X 0 1 2
Probabilities −1

2
3
4

3
4
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