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Special Integer-Valued
Random Variables

Here we collect a few special discrete random variables that we will run into quite
often. All of these random variables assign integer values to the random outcomes.
Other varieties will come later.

Recall that a discrete random variable, X, is a real-valued function whose do-
main is the sample space, S, and the range, say Δ, is a countable set, such that for
each a ∈ Δ, the resulting partitioning subset of S, namely {X = a}, is an event
whose probability is denoted as

f(a) := P(X = a), for a ∈ Δ.

This function f is called the density of the random variable X. Symbolically,

S
X−→ Δ

f−→ [0, 1]; where f(a) = P(X = a); for each a ∈ Δ.

It is understood that f(a) = 0 for any a 6∈ Δ. Other notations for the density of

S

R
13

A

Figure 6.1: An Event, A = {X = 13}.

a random variable, that we may use in this book, are fX(a) or p(a) or p
X
(a). A

cartoon of the event A = {X = 13} is shown in Figure 6.1, i.e., A = {ω ∈ S :
X(ω) = 13}. Now we present a few commonly encountered discrete “name-brand”
random variables along with their densities, which arise often in real life and are
discussed throughout the remainder of the book.
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6.1 Some Famous Discrete Name Brands

The first example deals with counting the number of successes that we have already
seen earlier .

Example - 6.1.1 - (Binomial random variables) We toss a coin twice. The
sample space is S = {HH,HT, TH, TT}. Let X be the number of heads in the
two tosses. Now Δ = {0, 1, 2} with P(X = 0) = (1−r)2, P(X = 1) = 2r(1−r) and
P(X = 2) = r2, where r is the probability of heads on a single toss. X is called a
binomial random variable and we denote it by X ∼ B(2, r). The reader should be
abel to guess by now what X ∼ B(3, r) stands for. In general, if X represents the
number of heads in n tosses of a coin, then X has the following probability density:

P(X = k) =

�
n

k

�

rk(1− r)n−k; k ∈ Δ = {0, 1, 2, · · · , n}. (1.1)

A quick reader may recall Example 4.2.3 that proves this. Of course, it is denoted
by X ∼ B(n, r). The number r (which is the probability of an H on a single toss)
represents the type of coin, and is called a parameter of the density. The top two
stick graphs in Figure 6.2 show two binomial densities. Unfortunately, there is no
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Poisson(1.4) Density
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Figure 6.2: B(7, 0.2), B(17, 0.8), Poisson(1.4) and Poisson(9.0) Densities.
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6.1 Some Famous Discrete Name Brands 57

closed form formula for the cdf of a binomial rv,

F (t) := 0, F (t) :=
mX

k=0

�
n

k

�

rk(1−r)n−k, m ≤ t < m+1, m = 0, 1, 2, · · · , n−1,

and F (t) = 1 for all t ≥ n. Modern computational software platforms, such as
Matlab, R, have builtin functions for the binomial cdfs.

Example - 6.1.2 - (Poisson random variables) A random variable X ∈ Δ :=
{0, 1, 2, · · · }, for which

P(X = k) = e−λλ
k

k!
; k ∈ Δ = {0, 1, 2, · · · }, (1.2)

where λ > 0 is a fixed number, is called a Poisson random variable with parameter
λ. We denote this by X ∼ Poisson(λ). The bottom two stick graphs in Figure
6.2 show two Poisson densities. Poisson distribution is often used as a model to
represent the number of telephone calls arriving in a telephone exchange or to model
the number of particles emitted by a radioactive substance. Unfortunately, again,
there is no closed form expression for the cdf of a Poisson rv,

F (t) := 0, t < 0, F (t) := e−λ
nX

k=0

λk

k!
, n ≤ t < n+ 1, n = 0, 1, 2, · · · .

Modern computing platforms, such as Matlab, R, have builtin functions for most
well known cdfs. The symbolism X ∼ Poisson(λ) just means that the density of
X is Poisson with parameter λ, as stated in (1.2).

Example - 6.1.3 - (Hypergeometric random variables) In our earlier lectures
we have already encountered this variety. Consider an urn containing G number of
good apples and B number of bad apples. We reach in and blindly pick n apples
all at once. Let X be the number of good applies in our draw. The density of this
random variable is

P(X = k) =


G
k

�
B

n−k

�


G+B
n

� , k = 0, 1, 2, · · · ,min{G,n}. (1.3)

We denote this by X ∼ Hypergeom(G,B, n). The shapes of its densities are similar
to those of binomial densities. Just like the binomial and Poisson random variables,
we are unable to give a general closed form formula for the cdf F (t).

Example - 6.1.4 - (Geometric random variables) If you keep tossing a coin
until you get the first H, and let X be the number of T ’s observed before observing
the first H, then collecting the possible values of X, we get Δ = {0, 1, 2, · · · }. The
event {X = k} will occur only when we observe k successive T ’s and then an H.
Since p is the probability of an H on a toss,

P(X = k) = p(1− p)k, k ∈ Δ = {0, 1, 2, · · · }. (1.4)
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Geometric(0.3) Density
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Figure 6.3: Two Geometric Densities and their Distributions.

We use the notation X ∼ Geometric(p) to denote this random variable and call
it a geometric random variable. Unlike the binomial, Poisson and hypergeometric
random variables, the cdf, F (t) = P(X ≤ t), of a geometric random variable can
easily be written in a closed form. For instance, For t < 0, we trivially see that
F (t) = 0. For t ∈ [0, 1), F (t) = P(X ≤ t) = P(X = 0) = p, and so on. In general,

F (t) =

(

0 when t < 0,
Pn−1

k=0 p(1− p)k when t ∈ [n− 1, n), n = 1, 2, · · · .

Mathematically, when t ∈ [n− 1, n) for n = 1, 2, · · · ,

F (t) = P(X ≤ t) =

n−1X

k=0

p(1− p)k = p
1− (1− p)n

1− (1− p)
= 1− (1− p)n.

Figure 6.3 shows two geometric densities along with their corresponding distribu-
tions. The symbolism X ∼ Geometric(p) means that the density of X is as given
in (1.4). Get used to this notation since we will use it through out in our future
developments.
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6.2 Useful Series 59

Example - 6.1.5 - (Negative binomial random variables) Keep tossing a coin
until you get the n-th H. Let X be the number of T ’s observed before observing
the n-th H. Collecting the possible values of X, we get Δ = {0, 1, 2, · · · }. The
event {X = k} will occur if and only if when over the resulting n+k spots, the last
one is an H and over the first n− 1 + k spots we have n− 1 number of H’s and k
number of T ’s. Since p is the probability of an H on a toss,

P(X = k) =

�
n− 1 + k

n− 1

�

pn(1− p)k, k ∈ Δ = {0, 1, 2, · · · }. (1.5)

We use the notation X ∼ N.B(n, p) to denote this random variable and call it a
negative binomial random variable. The cdf is not easy to write in a closed form.

6.2 Useful Series

For future reference purposes here we collect a few results from Calculus. By
induction (or several other ways) we can verify the following arithmetic series,

nX

i=1

i =
n(n+ 1)

2
,

nX

i=1

i2 =
n(n+ 1)(2n + 1)

6
,

nX

i=1

i3 =
n2(n+ 1)2

4
.

Take for granted
P∞

k=1
1
k2 = π2

6 , see also Exercise 6.3.20. Here are a few more
series.

nX

k=0

�
n

k

�

xkyn−k = (x+ y)n, (Binomial series),

mX

k=0

�
n1

k

��
n2

m− k

�

=

�
n1 + n2

m

�

, (Hypergeometric series),

∞X

k=0

xk

k!
= ex, (Exponential series),

∞X

k=0

rk =
1

1− r
, (Geometric series), −1 < r < 1,

∞X

k=0

�
n+ k − 1

n− 1

�

rk =
1

(1− r)n
, (Negative binomial series), −1 < r < 1.

To verify the hypergeometric series, simply compare the coefficient of xm on both
sides for (1 + x)n1+n2 = (1 + x)n1(1 + x)n2 . By differentiating the binomial (and
other) series we can get more results. For instance, if we differentiate the binomial
series with respect to x and then afterwards let y = 1− x, we get

nX

k=1

k

�
n

k

�

xk−1(1− x)n−k = n(x+ 1− x)n−1 = n.
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Twice differentiate the binomial series w.r.t x (or factor switch, cf. Exercise 2.3.13)
and then let y = 1− x, to get

nX

k=2

k(k − 1)

�
n

k

�

xk−2(1− x)n−k = n(n− 1)(x+ 1− x)n−1 = n(n− 1).

Multiplying by x and x2, respectively, on both sides of the last two series we get

nX

k=1

k

�
n

k

�

xk(1− x)n−k = xn,

nX

k=2

k(k − 1)

�
n

k

�

xk(1− x)n−k = x2n(n− 1).

A similar argument applied to the exponential and the geometric series gives

∞X

k=1

k
xk

k!
= xex,

∞X

k=1

krk =
r

(1− r)2
, −1 < r < 1.

Repeated differentiation of geometric series gives the negative binomial series.

Example - 6.2.1 - Since 2 + 4 + · · · + (2n) =
Pn

i=1(2i) = 2
Pn

i=1 i = 2n(n+1)
2 =

n(n+1), and 1+2+3+4+ · · · +(2n) = (2n)(2n+1)
2 , subtracting the first sum from

the second sum gives that 1 + 3 + 5 + · · ·+ (2n− 1) = n(2n+ 1)− n(n+ 1) = n2.
To see an example of the binomial series in action, take x = y = 1 in it to get

Pn
k=0


n
k

�
= (1 + 1)n = 2n. Other choices for x, y give more varieties.

If you take n1 = n2 = m = n in the Hypergeometric series you get
Pn

k=0


n
k

�2
=


2n
n

�
. The reader may now practive with the above useful series to generate many

more interesting formulae.

6.3 Exercises

Exercise - 6.3.1 - At the “dead-man’s-curve” on interstate I-90 in Cleveland, acci-
dents occur at the rate of λ = 1 per month and the number of accident is a Poisson
random variable. What is the chance of observing five or more accidents in one
month?

Exercise - 6.3.2 - WhenX ∼ B(n, 1
2), find the probabilities of the following events.

(i) {X is even }, (ii) {X is odd }.

Exercise - 6.3.3 - When X ∼ Poisson(λ), find P(X is even). Note anything pe-
culiar about your answer and explain its cause.

Exercise - 6.3.4 - Find P(X is even ) when X ∼ Geometric(p).

Exercise - 6.3.5 - Let X be a random variable that represents the number of tails
before observing the 13-th head in repeated tosses of a coin. Assume the probability
of observing a head on a single toss is p. Show that the density of X is

P(X = k) =

�
k + 13− 1

13 − 1

�

p13(1− p)k, k = 0, 1, 2, · · · .

In other words, show that X ∼ NB(13, p).
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