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Special Continuous R.Vs

Continuous distributions are mathematical models of real-life random experiments
which may, at best, only approximately represent the actual probabilistic behavior
of the random experiment. We try to have some justifications while linking an actual
random experiment with a particular distribution. These approximate models are
quite useful in just about all fields of knowledge. Even when the model cannot be
justified from a practical point of view, it can still be used to better understand the
consequences of different possible scenarios. In the following we list a few of these
model distributions along with their important properties.

8.1 Some Famous Continuous Name Brands

Here we collect a few continuous random variables. In the end of the lecture ex-
ercises a few more examples are provided. All these random variables have wide
applications.

Example - 8.1.1 - (Uniform random variables) Consider a spinner which does

not have any preferential stopping region. How
should we model this phenomenon? If X rep-
resents the point where the pointer stopped, X
“selects a point at random” from the interval [0, 1].
This is modeled by a uniform density. A random
variable X is called a uniform random variable on
an interval [α,β] if the probability density function
of X is given by

0

1/2

1/43/4

f(x) =

� 1
β−α if α < x < β,

0 otherwise.

For our spinner, α = 0, β = 1. The numbers α,β are called its parameters that we
can adjust to represent various applications. We will denote this random variable
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by X ∼ Uniform(α,β). The distribution function (cdf) of X is

F (t) =







0 if t < α,
Z t

α

f(x)dx if α ≤ t ≤ β,

1 if β < t,

=







0 if t < α,
t− α

β − α
if α ≤ t ≤ β,

1 if β < t.

Two examples of this density are shown in Figure 8.1. X represents the random
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Figure 8.1: Two Uniform Densities with their CDFs.

experiment of “blindly” selecting a point from the interval [α,β]. Note dF (t)
dt = f(t)

for all t ∈ IR except at two points, α,β, where it does not matter since their
lengths (and hence probabilities) add up to zero. The special case of α = 0, β = 1
is the back bone of simulation and Monte Carlo methods. Most computers have
algorithms to select points “at random” from [0, 1] and the resulting numbers are
called “pseudo-random numbers”.

Example - 8.1.2 - (Beta random variables) A probability model for studying
percentages is a generalization of Uniform(0, 1), called the beta distribution. The
general form of its density is

f(x) =

(
Γ(a+b)

Γ(a) Γ(b)x
a−1(1− x)b−1, if 0 < x < 1,

0, otherwise.
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8.1 Some Famous Continuous Name Brands 77

The constants a, b > 0 are its parameters. Its notation is X ∼ Beta(a, b). For
a = b = 1 we get the Uniform(0, 1) distribution. For the the special case of b = 2,
for example, its cdf is

F (t) =
Γ(a+ 2)

Γ(a)

Z t

0

xa−1(1− x) dx = a(a+ 1)

Z t

0

xa−1(1− x) dx

= a(a+ 1)

�
xa

a
− xa+1

a+ 1

��
�
�
�

x=t

x=0

= a(a+ 1)

�
ta

a
− ta+1

a+ 1

�

= ta (a+ 1− at) , 0 < t < 1.

F (t) = 0 for t ≤ 0 and F (t) = 1 for t ≥ 1. For arbitrary values of a, b, there is no
nice closed form expression for F (t).

Example - 8.1.3 - (Exponential rvs — modeling radio activity) The time it
takes for a Carbon-14 atom to decay is used to date ancient carbonaceous artifacts.
The half-life of the unstable Carbon-14 isotope is roughly around 5, 730 years. That
is, if C amount of carbon-14 material is left to decay naturally, after 5, 730 years
C
2 amount will be left. How long will it take to have only C

4 , or
C
8 or C

16 amount to
remain? More generally, if F (t) ∈ (0, 1) is the percentage of the amount decayed
away and t is the needed amount of time, then this F (t) is a CDF that is well
approximated by an exponential distribution, 1− e−λt, with density

f(x) =

�
λe−λx if x ≥ 0,

0 otherwise,

where λ > 0 is a parameter representing the rate of decay. To see the link between
the rate of decay and half-life, we must have

1

2
= F (5730) =

Z 5730

0

λe−λx dx = 1− e−λ5730.

Solving for λ we get

λ =
ln 2

half-life
= 0.00012097.

In statistical literature the half-life is called the median of the density. We denote an
exponential random variable by X ∼ Exp(λ). In this context, X can be interpreted
as the waiting time until a typical (or randomly picked) Carbon-14 isotope will
decay. Two examples of this density and cdf are shown in Figure 8.2.

To see how this random variable is used for carbon dating, a bone sample of an
Egyptian mummy was found to have 60% of the total Carbon-14. How old is the
mummy? We need to solve for t,

1− 0.60 = 0.40 = F (t) = 1− e−0.00012097t.

This gives that the mummy is t = 4, 222 years old.
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Figure 8.2: Two Exponential Densities with their CDFs.

Example - 8.1.4 - (Gamma and chi square densities) Cumulative life lengths
of several resistors, (or appliances) is modeled by extending the exponential density
as follows. Wholesale dealers use such models to predict the demand, or warranty
durations, for their products. A continuous random variable X, with density func-
tion

f(x) =

�
λα

Γ(α)x
α−1e−λx if x ≥ 0

0 otherwise,

is called a gamma random variable. We denote this by X ∼ G(λ,α) where λ,α > 0
are its parameters. Two examples of this density are shown in the first row of
Figure 8.3. Note that when α = 1, G(λ, 1) ∼ Exp(λ).

Some gamma densities appear so often in Statistics that they are given a special
name. If X ∼ G( 12 ,

n
2 ) (i.e., λ = 1

2 and α = n
2 where n is a positive integer) then

X is also called a chi square random variable with n degrees of freedom and is also
denoted as X ∼ χ2

(n). Two examples of this density are shown in the second row
of Figure 8.3.

Example - 8.1.5 - (Normal random variables — modeling measurement
errors) All measurements are contaminated with errors. The cumulative effect
of several sources of measurement errors is modeled by normal distributions. An
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Figure 8.3: Two Gamma and Two Chi Square Densities.

example of this was seen in the beginning of the last lecture while modeling the fill
weights of lemonade cans. A continuous random variable, X, having the probability
density,

f(x) =
1

b
√
2π

e−
1

2b2
(x−a)2 , x ∈ IR,

is called a normal or a Gaussian1 random variable with parameters a, b, where a ∈
(−∞,∞) specifies the location of the hump and b > 0 specifies the distance of the
point of inflection form the location of the hump. We denote this by X ∼ N(a, b2).
Further meanings of a, b2 will become clear later. Three normal densities are shown
in Figure 8.4. Luckily, the cdf, P(X ≤ t), of all normal random variables is linked
to one very special case, called the standard normal random variable.

Recall from Section 7.3,
R∞
−∞ e−x2/2dx =

√
2π. This integral gives rise to a

very special normal density. A continuous random variable, Z, with a probability

1Normal distributions were discovered by A. DeMoivre (1667-1754) in 1733 as an ap-
proximation of the binomial distribution B(n, 1

2 ) for large values of n. Later, Laplace
(1749-1827) extended DeMoivre’s result by approximating B(n, p) for any 0 < p < 1.
The German mathematician, Carl F. Gauss (1777-1855), apparently rediscovered it while
modeling the orbits of celestial bodies when measurements had errors, explaining why this
distribution is also known by his name.
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Figure 8.4: Three Normal Densities.

density function and distribution function,

f(x) =
1√
2π

e−x2/2, x ∈ IR, F (t) =

Z t

−∞

1√
2π

e−x2/2dx,

is called a standard normal random variable. We denote this random variable by
Z ∼ N(0, 1). This density is shown in Figure 8.5. Some books and we will also
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Figure 8.5: The Standard Normal Density.

denote the cdf, F (t) of Z by Φ(t) and its density by φ(x). A short table for Φ(t) is
given below.

t −3.0 −2.5 −2.0 −1.96 −1.65 −1.47 −1.28 −1.0 −0.5
Φ(t) .0013 .0062 .0228 .0250 .0496 .0708 .1003 .1587 .3085
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The main justification of why a normal random variable is related to the cu-
mulative effect of measurement errors is provided by a theorem called the central
limit theorem to be proved later.

When X ∼ N(a, b2) and Z ∼ N(0, 1), one useful link between the distributions
of these two random variables is

P(X ≤ t) = P

�
X − a

b
≤ t− a

b

�

= P

�

Z ≤ t− a

b

�

.

That is, X−a
b ∼ Z. Hence the distribution Φ(t) of Z may be used to find the dis-

tribution of any other normal random variable. This is called the z-transformation
link. For instance, from Example 7.1.1 when X ∼ (20, 0.25) is the fill weight of a
randomly chosen can, the chances of it having less than 18.5 oz are (by using the
above short table)

P(X ≤ 18.5) = P

�

Z ≤ 18.5 − 20

0.5

�

= P(Z ≤ −3) = 0.0013.

Example - 8.1.6 - (Cauchy random variables — modeling symmetric heavy
tails phenomenon) The function

f(x) =
b

π (b2 + (x− a)2)
, −∞ < x < ∞

is nonnegative and the total area under it is one. This makes it a density having
parameters a ∈ IR, and b > 0. A random variable having this density is called
a Cauchy random variable. We will denote this by X ∼ Cauchy(a, b). It is not
difficult to see that the cdf of X is

F (t) =
1

2
+

1

π
tan−1((t− a)/b), −∞ < t < ∞.

Figure 8.6 shows the comparison of the standard normal N(0, 1) and Cauchy(0, 1)
densities. Note the difference in the tails. Cauchy densities serve as models where
the measurements can take large values in both extremes.

For instance, consider the tunnel Exercise 3.3.15. If Θ is taken to be the ran-
domly selected angle in [0,π] and X = cot(Θ) is the resulting value as shown in
the figure associated to that exercise, then P(X > t) = 1

π tan−1( 1t ) for t > 0.
Differentiating with respect to t, and the symmetry, shows that X ∼ Cauchy(0, 1).

8.2 Exercises

Exercise - 8.2.1 - A continuous random variable, X, having the density,

f(x) = c
e(x−a)/b

(1 + e(x−a)/b)2
; x ∈ IR,

is called the logistic random variable. It is denoted by X ∼ Logist(a, b), a ∈ IR,
b > 0. Find the constant c. Then plot on the same graph paper the density of
Cauchy(0, 1), the density of N(0, 1) and the density of Logist(0, 1). Which density
has the highest tails? Which has the lowest tails.
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Figure 8.6: The Cauchy and Standard Normal Densities.

Exercise - 8.2.2 - (Chi square versus Poisson) Let X have a chi square density
with n = 4 degrees of freedom. Show that its cdf is:

F (t) = 1− exp(−t/2)
2−1X

j=0

(t/2)j

j!
, t > 0.

Exercise - 8.2.3 - Use a table of the distribution of N(0, 1), such as the table for
Φ(t) provided in Example 8.1.5, to find P(−1.28 < X < 1.96).

Exercise - 8.2.4 - Let X ∼ N(0, 1). find P(X ≤ −2.5), P(X ≥ 2.5), P(−2.5 <
X < 2.5). You may use that table for Φ(t) provided in Example 8.1.5.

Exercise - 8.2.5 - When X is a standard normal random variable obtain the prob-
ability that X could be in the interval (0, 0.5) or (2.5, 3.0). You may use that table
for Φ(t) provided in Example 8.1.5.

Exercise - 8.2.6 - When X ∼ Gamma(2, 2), find the distribution F (t) = P(X ≤ t)
for t ∈ IR.

Exercise - 8.2.7 - Let X ∼ Beta(2, 2). Find P( 12 < X < 3
4 ).

Exercise - 8.2.8 - Let X ∼ χ2
(4). Find P(X < 4).

Exercise - 8.2.9 - The human body temperature, X, is known to be normally
distributed, i.e., X ∼ N(a, b2), where a = 98.6oF. If about 95% of the people have
their typical body temperature between 98.2 and 99 degrees, what should be b?
You may use that table for Φ(t) provided in Example 8.1.5.

Exercise - 8.2.10 - (Radioactivity) For Plutonium 239 the half-life is 24,100
years. Model the time of decay of a Plutonium 239 atom with an exponential
random variable. What is the rate of decay, λ? How long will it take for a Pluto-
nium 239 dump site to decay to 60% of its original amount?
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