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Mask R-CNN

I Comprehensive model for
1. Object detection
2. Classification
3. Semantic Segmentation

I Elegantly combines multiple ideas from CV and DL.

Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017). arXiv:
1703.06870. URL: http://arxiv.org/abs/1703.06870.
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Mask R-CNN
Outline

1. Extract features through a CNN.
2. Select image regions potentially containing objects.
3. For each potential object region, use CNN features of that region to

3.1 classify,
3.2 localize, and
3.3 segment
the object.
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Mask R-CNN
Outline with terminology

1. Backbone Network: CNN for feature extraction.
2. Region Proposal Network (RPN): detects image regions potentially

containing objects.
3. For each proposed region

3.1 Region of Interest Align (ROIAlign): Extract backbone CNN features.
3.2 Classify
3.3 Predict Bounding Box
3.4 Predict Segmentation Mask: Pixel level classification into object and

background.
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Stage 1: Backbone Network

I Any CNN can work.
I Primary purpose is to extract

1. multi-scale features that are
2. rich with meaning (semantics)

I A very good example is the feature pyramid network2.

2Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”. In: CoRR
abs/1612.03144 (2016). arXiv: 1612.03144. URL: http://arxiv.org/abs/1612.03144.
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Feature Pyramid

I Recall that a Gaussian pyramid is a multi-scale image representation.
I SIFT descriptors from a Gaussian pyramid represent a feature pyramid.
I CNNs are inherently multi-scale because of subsampling.
I But why use the lowest-resolution scale only?
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Feature Pyramid

I Deep layers represent lower spatial resolution but higher semantic value.
I Shallow layers represent higher spatial resolution but lower semantic value.
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Stage 1: Feature Pyramid Network

I Recompute high-res features from sematically-rich low-res features.

I Add lateral skip connections to improve localization and stabilize training.
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Stage 1: Feature Pyramid Network
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Stage 1: Feature Pyramid Network
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Stage 2: Region Proposal Network

I A binary classifier that proposes image regions that can potentially
contain some object.

Figure: Region proposal network. Author: N. Khan (2021)

Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks.”. In: NIPS. ed. by Corinna Cortes et al. 2015, pp. 91–99.
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Stage 2: Region Proposal Network
Anchor Boxes

I A set of K = 9 boxes around one location.
I 3 aspect ratios and 3 scales.

I Implicit assumption: object centered at a location can be covered by one
of the K boxes.

I RPN will refine these K fixed anchor boxes to cover the object more
accurately.
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Stage 2: Region Proposal Network
Interpretation of output

For each of the K = 9 anchor boxes at each location,
I Classification head produces P(object|boxk).
I Regression head edits/refines the fixed anchor boxes.

I ∆x ,∆y ,∆w ,∆h

I predicted boxk ←− anchor boxk + (∆x ,∆y ,∆w ,∆h)
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Stage 2: Region Proposal Network
Loss Function

I Ground-truth for anchor boxes can be constructed using actual GT boxes

p∗i =


1 highest IoU with a GT box
1 IoU > 0.7 with any GT box
−1 IoU < 0.3 with all GT boxes
0 otherwise

I Anchors that are neither positive nor negative are not used for training.
I Use cross-entropy loss for classification head

Lcls({pi , p∗i }) = −
∑

i :p∗i 6=0

p∗i log pi + (1− p∗i ) log(1− pi )
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Stage 2: Region Proposal Network
Loss Function

I Use `1-loss on positive anchors for regression head

Lreg({bi ,b∗i }) =
∑

i :p∗i =1

‖bi − b∗i ‖1

I Overall RPN loss

LRPN({pi , p∗i } , {bi ,b∗i }) = Lcls({pi , p∗i }) + λLreg({bi ,b∗i })
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Stage 3: RoIAlign
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Stage 3: RoIAlign
Bilinear Interpolation: Lesson from Image Warping

I Recall that for warping images, to find the color at real coordinates
(x ′, y ′) we interpolated from the 4 quantized neighbours.

I Color could be a scalar gray-scale value or it could be an RGB vector!
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Stage 3: RoIAlign

I Given real location (x ′, y ′), we can interpolate the CNN feature vector as
well.

I RoIAlign step: Given a bounding box with real coordinates
1. Make a uniform grid of (real) locations within the bounding box.
2. Bilinearly interpolate CNN features for each location.

I Yields a fixed-size feature volume irrespective of bounding box size.
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Stage 4: Classification, Localization, Segmentation

I From each ROIAlign feature volume,
I predict class probabilities via softmax,
I predict per-class bounding boxes via regression, and
I predict instance segmentation mask via logistic sigmoid.

I Training images contains GT for all three predictions.
I Multi-task loss function.
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Summary

I We have covered the architecture of the Mask R-CNN, a state-of-the-art
model for multiple CV tasks.

I Design decisions reflect the evolution of CV as well.
I An excellent example of multi-task learning.
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