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17. Optic Flow – Global



Global Methods

Global Optic Flow

I In the last lecture, we covered the local optic flow method of Lucas &
Kanade.

I Simple and fast.
I Low memory requirements.
I Results often better than more sophisticated approaches.
I Problems at locations where the local constancy assumption is violated:

flow discontinuities and non-translatory motion (e.g. rotation).
I Does not compute the flow field at all locations.

I In this lecture, we study a global method that produces dense flow fields
(i.e., at every pixel).
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Global Methods

Variational Method of Horn & Schunck

I At some given time z the optic flow field is determined as minimising the
function (u(x , y), v(x , y))T of the energy functional

E (U,V ) =
1
2

∑
x ,y

(Ixu + Iyv + Iz)2︸ ︷︷ ︸
data term

+α
(
‖∇u‖2 + ‖∇v‖2

)︸ ︷︷ ︸
smoothness term


I Has a unique solution that depends continuously on the image data.
I Global method since optic flow at (x , y) depends on all pixels in both

frames.

Notation Alert!
U and V are 2D arrays of the same size as the frame. Inside the sum-
mation the flow component u(x , y) at a pixel location is shortened
as u. Similarly for v .
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Global Methods

Variational Method of Horn & Schunck

E (U,V ) =
1
2

∑
x ,y

(Ixu + Iyv + Iz)2︸ ︷︷ ︸
data term

+α
(
‖∇u‖2 + ‖∇v‖2

)︸ ︷︷ ︸
smoothness term


I Regularisation parameter α > 0 determines smoothness of the flow field.

I α→ 0 yields the normal flow.
I The larger the value of α, the smoother the flow field.

I Dense flow fields due to filling-in effect:
I At locations, where no reliable flow estimation is possible (small ‖∇I‖), the

smoothness term dominates over the data term.

I This propagates data from the neighbourhood.
I No additional threshold parameters necessary.

Nazar Khan Computer Vision 4 / 16



Global Methods

Functionals and Calculus of Variations

I Since U is a function, E (U,V ) is a function of a function. A function of a
function is also called a functional.

I Standard calculus can optimize functions f (x) by requiring d
dx f |x∗ = 0.

I Functionals are optimized via calculus of variations.
I Optimizer of an energy functional

E (U,V ) =
∑
x ,y

F (x , y , u, v , ux , uy , vx , vy )

must satisfy the so-called Euler-Lagrange equations

∂xFux + ∂yFuy − Fu = 0
∂xFvx + ∂yFvy − Fv = 0

with some boundary conditions.
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Global Methods

Functionals and Calculus of Variations

I For our energy functional E (U,V ),

F =
1
2

(Ixu + Iyv + Iz)2 +
α

2
(
u2
x + u2

y + v2
x + v2

y

)
with partial derivatives

Fu = Ix (Ixu + Iyv + Iz)

Fv = Iy (Ixu + Iyv + Iz)

Fux = αux

Fuy = αuy

Fvx = αvx

Fvy = αvy
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Global Methods

Variational Method of Horn & Schunck

I So the Euler-Lagrange equations can be written as

α(uxx + uyy )− Ix (Ixu + Iyv + Iz) = 0
α(vxx + vyy )− Iy (Ixu + Iyv + Iz) = 0

I Laplacian ∆u = uxx + uyy can be written as 1
h2

∑
j∈Ni

(uj − ui ).
I At the ith pixel, after writing out the first and second order derivatives,

we obtain

α

h2

∑
j∈Ni

(uj − ui )− Ixi (Ixiui + Iyivi + Izi ) = 0

α

h2

∑
j∈Ni

(vj − vi )− Iyi (Ixiui + Iyivi + Izi ) = 0

where h is the grid size (usually 1).
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Global Methods

Variational Method of Horn & Schunck

I Two equations for every pixel.

α

h2

∑
j∈Ni

(uj − ui )− Ixi (Ixiui + Iyivi + Izi ) = 0

α

h2

∑
j∈Ni

(vj − vi )− Iyi (Ixiui + Iyivi + Izi ) = 0

I But computing (ui , vi ) requires already knowing the flow (uj , vj) at the
neighbours j ∈ Ni .

I Approximate solution: start with an initial flow field (U(0),V (0)).
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Global Methods

Variational Method of Horn & Schunck

I Can be solved via fixed-point iterations

u
(t+1)
i =

α
h2

∑
j∈Ni

u
(t)
j − Ixi

(
Iyiv

(t)
i + Izi

)
α
h2 |Ni |+ I 2xi

v
(t+1)
i =

α
h2

∑
j∈Ni

v
(t)
j − Iyi

(
Ixiu

(t)
i + Izi

)
α
h2 |Ni |+ I 2yi

with k = 0, 1, 2, . . . and an arbitrary initialisation (e.g. zero vector).
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Global Methods

Variational Method of Horn & Schunck

Figure: Left to right: Dense and smooth optic flow fields obtained via Horn &
Schunck’s variational method for smoothness parameter α = 0.0000001, 0.00001 and
0.001 after 400 iterations. Noise smoothing scale was σ = 0.5. Author: N. Khan
(2018)
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Global Methods

Variational Method of Horn & Schunck
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Global Methods

Variational Method of Horn & Schunck
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Global Methods

Variational Method of Horn & Schunck

Figure: Left to right: Dense and smooth optic flow fields obtained via Horn &
Schunck’s variational method for smoothness parameter α = 0.0001 after 400
iterations. Noise smoothing scale was σ = 0.5. Author: N. Khan (2018)
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Global Methods

Variational Method of Horn & Schunck

Figure: Left to right: Dense and smooth optic flow fields obtained via Horn &
Schunck’s variational method for smoothness parameter α = 0.001 after 400
iterations. Noise smoothing scale was σ = 0.5. Author: N. Khan (2018)
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Global Methods

Variational Method of Horn & Schunck

Figure: Left to right: Dense and smooth optic flow fields obtained via Horn &
Schunck’s variational method for smoothness parameter α = 0.01 after 400
iterations. Noise smoothing scale was σ = 0.5. Author: N. Khan (2018)
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Global Methods

Variational Method of Horn & Schunck
Summary

I Variational methods for computing optic flow are global methods.
I Create dense flow fields by filling-in.
I Model assumptions of the variational Horn & Schunck approach:

1. grey value constancy,
2. smoothness of the flow field

I Mathematically well-founded method.
I Minimising the energy functional leads to coupled differential equations.
I Variational methods can be extended and generalised in numerous ways,

with respect to both models and algorithms.
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