CS-570 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
19. Camera Anatomy

Camera Matrix

Rich Source of Geometric Information

- The 3×4 camera matrix P encodes very rich geometric information.

$$
P=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]
$$

- The advantage of linear algebra is that we handle all of this geometric information through algebra (manipulation of symbols).

Camera Center

- Let M denote the first 3×3 sub-matrix of the 3×4 matrix P.
- When M is non-singular, P has rank 3 and therefore a null-space of dimensionality 1.
- Therefore there exists a vector v such that

$$
P \mathbf{v}=\mathbf{0}
$$

- Vector v must be the camera centre \mathbf{C}.

Camera Center

Proof that \mathbf{C} is the null-vector of P

- Consider the set of points along the line joining some point \mathbf{A} and the camera centre \mathbf{C}.

$$
\mathbf{X}(\lambda)=(1-\lambda) \mathbf{C}+\lambda \mathbf{A}
$$

This is called the join of \mathbf{A} and \mathbf{C}.

- All such points will map to the same image point PA

$$
\begin{aligned}
\lambda P \mathbf{A} & =P \mathbf{X}(\lambda) \\
& =(1-\lambda) P \mathbf{C}+\lambda P \mathbf{A} \\
\Rightarrow P \mathbf{C} & =\mathbf{0}
\end{aligned}
$$

- In Python, C=scipy.linalg.null_space (P)

Camera Center

- Camera can image every point in 3D but it's own centre! Why?
- If $\operatorname{Rank}(M)=2$, then C will be a point at infinity, i.e. the last coordinate of C will be zero!
- This is called the camera at infinity model.

Why does the road vanish at the horizon?

Why do parallel lines meet in images?

Figure: Projection of two points on two parallel lines in a plane. Author: N. Khan (2021)

Why do parallel lines meet in images?

Figure: Projection of two more points. Author: N. Khan (2021)

Why do parallel lines meet in images?

Figure: Projection of two parallel lines in a plane. Author: N. Khan (2021)

Vanishing Point

- Point where parallel lines meet in the image.
- In the real world, parallel lines meet at infinity.
- So a vanishing point is the image of infinity!

Points at Infinity

- Let \mathbf{p}_{i} be the i-th column of P.
- Let $\mathbf{p}^{i T}$ be the i-th row of P.

$$
\begin{aligned}
P & =\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right] \\
\mathbf{p}_{i} & =\left[\begin{array}{l}
p_{1 i} \\
p_{2 i} \\
p_{3 i}
\end{array}\right] \longrightarrow P=\left[\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3} & \mathbf{p}_{4}
\end{array}\right] \\
\mathbf{p}^{i} & =\left[\begin{array}{l}
p_{i 1} \\
p_{i 2} \\
p_{i 3} \\
p_{i 4}
\end{array}\right] \longrightarrow P=\left[\begin{array}{l}
\mathbf{p}^{1 T} \\
\mathbf{p}^{2 T} \\
\mathbf{p}^{3 T}
\end{array}\right]
\end{aligned}
$$

Points at Infinity

- In homogenous coordinates we can express points at infinity.
- $\ln \mathbb{P}^{2},[a, b, 0]$ is a point at infinity in the direction of the $2 D$ vector $[a, b]$. Why?
- In $\mathbb{P}^{3},[a, b, c, 0]$ is a point at infinity in the direction of the $3 D$ vector [a,b, c].
- Setting the last coordinate to 0 in homogenous coordinates, yields a point at infinity in Euclidean space.
- Every direction is represented as a point at infinity in that direction.
- Write down the representation of the x-axis in \mathbb{P}^{3}.

Columns of P

- Notice that

$$
\left.P\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{T}=\mathbf{p}_{1} \quad \text { (first column of } P\right)
$$

- But $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}$ is the direction of the x-axis.
- So \mathbf{p}_{1} is the image of the point at infinity in the direction of the x-axis.
- Also called the vanishing point in the x-direction.
- p_{2} is the image of ... ?
- Which point at infinity maps to p_{3} ?
- p_{4} is the projection of \ldots ?

Columns of P

- Column \mathbf{p}_{1} is the vanishing point in the x-direction.
- Column \mathbf{p}_{2} is the vanishing point in the y-direction.
- Column p_{3} is the vanishing point in the z-direction.
- Column p_{4} is the image of the world origin.

Row of P

- Each row of P contains 4 numbers that can be considered a vector in \mathbb{P}^{3}.
- Can also be considered as parameters of a plane in 3D.
- Equation of a plane
- Non-homogenous

$$
a X+b Y+c Z+d=0
$$

- Homogenous

$$
\begin{aligned}
\underbrace{\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]}_{\mathbf{n}^{\top}}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] & =0 \\
\mathbf{n}^{\top} \mathbf{X} & =0
\end{aligned}
$$

Rows of P

- We have seen that

$$
P=\left[\begin{array}{l}
\mathbf{p}^{1 T} \\
\mathbf{p}^{2 T} \\
\mathbf{p}^{3 T}
\end{array}\right]
$$

- Each row $\mathbf{p}^{i T}$ is a plane in \mathbb{P}^{3}.
- All points in plane $\mathbf{p}^{3 T}$ satisfy $\mathbf{p}^{3 T} \mathbf{X}=0$.
- In other words, their images are of the form $(x, y, 0)^{T}$.
- Therefore, $\mathrm{p}^{3 T}$ is the focal plane since only points on that plane can have such images.

- All points in plane $\mathbf{p}^{1 T}$ satisfy $\mathbf{p}^{1 T} \mathbf{X}=0$.
- In other words, their images are of the form $(0, y, w)^{T}$ which are points on the image y-axis.
- Since $P \mathbf{C}=\mathbf{0}, \mathbf{p}^{1 T} \mathbf{C}=0$ as well. So, \mathbf{C} also lies on the plane $\mathbf{p}^{1 T}$.
- Therefore, $\mathbf{p}^{1 T}$ is the plane defined by the camera centre \mathbf{C} and the line $x=0$ in the image.

Rows of P

1. Row $\mathbf{p}^{1 T}$ is the plane defined by camera centre \mathbf{C} and image y-axis.
2. Row $\mathbf{p}^{2 T}$ is the plane defined by camera centre \mathbf{C} and image x -axis.
3. Row $\mathbf{p}^{3 T}$ is the focal plane.
4. Using 1-3 Prove that $P C=0$.

Optical Axis

- Normal to plane $\left[\begin{array}{llll}a & b & c & d\end{array}\right]^{T}$ is the vector $\left[\begin{array}{lll}a & b & c\end{array}\right]$.
- Optical axis vector is the normal vector of the focal plane $\mathbf{p}^{3 T}$.
- Therefore, it is given by $\mathbf{m}^{3 T}=\left[\begin{array}{lll}p_{31} & p_{32} & p_{33}\end{array}\right]^{T}$.
- But since P is defined only upto scale, \mathbf{m}^{3} can point in the -ve Z direction as well.
- The principal axis vector pointing to the front of the camera is given by $\operatorname{det}(M) \mathbf{m}^{3}$ where M is the left 3×3 sub-matrix of P.

Principal Point

- Since a vector is a direction, it can be represented as $\left[\begin{array}{llll}a & b & c & 0\end{array}\right]^{T}$ which is a point at infinity in direction $\left[\begin{array}{lll}a & b & c\end{array}\right]^{T}$.
- Optical axis vector $\mathbf{m}^{3}=\left[\begin{array}{lll}p_{31} & p_{32} & p_{33}\end{array}\right]^{T}$ can be represented as a point at infinity

$$
\mathbf{m}_{\infty}^{3}=\left[\begin{array}{llll}
p_{31} & p_{32} & p_{33} & 0
\end{array}\right]^{T}
$$

- Principal point \mathbf{c} is the projection of m_{∞}^{3}.

$$
\mathbf{c}=P \mathbf{m}_{\infty}^{3}=M \mathbf{m}^{3}
$$

Summary

- We have seen that the camera matrix P is a rich source of geometric information.
- Given P, one can find
- camera center \mathbf{C}
- images of infinities (vanishing points)
- image of the world origin
- camera orientation and frustum
- focal plane
- principal point c
- Next lecture: camera calibration to obtain P

