CS-570 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

Concluding Remarks

Outline

- 1. What have we covered?
- 2. What were the general principles?
- 3. What mathematical ideas were important?
- 4. What have we not covered?
- 5. Which additional classes are offered?
- 6. Research opportunities
- 7. Acknowledgements

Lectures	Recitations	General Principles		
What Theory	t have we cover	red?		
1. h	ntroduction			
1	1.1 CV is deceptively	/ hard		(Lec. 1)
2. E	Background			
2	2.1 Mathematical te	chniques		(Lecs. 2,3)
2	2.2 Image filtering			(Lec. 4)
2	2.3 Derivative approx	ximations		(Lec. 5)
3. 2	D Computer Visi	on		
3	B.1 Edge detection			(Lec. 6)
3	3.2 Structure tensor			(Lec. 7)
3	3.3 Corner detection			(Lec. 8)
3	3.4 Local image desc	criptors		(Lecs. 9, 10)
3	3.5 Line detection			(Lec. 11)

Lectures		Recitations	General Principles				
What h	nave	we covered	d?				
4. Dee	ep Le	arning					
4.1	Back	ground				(Lecs 12	13)
4 2	Conv	volutional New	al Networks (CNN	ls)		(Lec.	14)
4.3	Mas	k R-CNN		(5)		(Lecs. 15,	16)
4.1	Tran	sformations					
	4.1.1	Homogenous c	oordinates and type	s of transfor	mations	(Lec.	17)
	4.1.2	Estimation				(Lec.	18)
	4.1.3	Warping				(Lec.	19)
	4.1.4	RanSAC				Lec.	20)́
5. 2D	Com	puter Visior	on Image Sequ	uences			
5.1	Opti	c flow					
	5.1.1	Background				(Lec.	21)
	5.1.2	Lucas & Kanad	de			Lec.	22)́
	5.1.3	Horn & Schung	ck			Lec.	23)
6. 3D	Com	puter Visior	1				

Lectures	Recitations	General Principles	Ideas	
What ha	ave we cove	red?		
6.1	Monocular			
6	5.1.1 Camera Geo	ometry		(Lec. 24)
6	5.1.2 Camera Ana	atomy		(Lec. 25)

	es Recitations	General Principles	Ideas			
Wh Reci	at have we covere	d?				
1.	Basics of Python and	Numpy			(Rec.	1)
2.	Image handling (Num	Py, PIL, OpenCV),			
	Image Filtering, Histo	gram Equalizatior	ı		(Rec. 2	2)
3.	Edge Detection, Vide	o Processing, App	lications		(Rec. 3	3)
4.	Corner Detection, Sca	ale space, Gaussia	n Pyramid		(Rec. 4	4)
5.	Feature Extraction an	d Matching (SIFT	r, surf, or	<b),< td=""><td></td><td></td></b),<>		
	Object Matching				(Rec.	5)
6.	Hough Transform in (OpenCV (Lines, C	ircles), Appli	cations	(Rec.	6)
7.	Keras basics, Train/V	al/Test sets, CNN	I Classificatio	on	(Rec.	7)
8.	Mask R-CNN (Trainir	ng, Annotation, C	ustom datase	ets)	(Rec. 8	8)
9.	Transformations in O	penCV (Affine, Pr	ojective)		(Rec.	9)
10.	RanSAC, Object Trac	king, Image Stitcl	ning		(Rec. 1	0)

	Recitations	General Principles	Ideas	
What ha	ave we cove	red?		

- $\label{eq:constraint} \textbf{11. Optic Flow, Motion Estimation and Tracking}$
- 12. Camera Calibration in OpenCV

(Rec. 11) (Rec. 12)

	General Principles		

What were the general principles?

- 1. Always be ready for a decision.
- 2. But delay hard decisions as much as possible.
- 3. Analyse at multiple scales.
- 4. Filter out non-maxima to reduce computation and improve results.
- 5. Use geometry to simplify solutions.
- 6. DL is taking over.
- 7. Become experts of existing CV and DL frameworks.

What mathematical ideas were important?

- 1. Almost everything was solved in an *error minimization* framework.
 - 1.1 Corner detection via structure tensor
 - **1.2** Estimation of affine and projective transformations
 - 1.3 Estimation of both local and global optic flow
 - **1.4** Estimation of camera matrix
 - 1.5 Deep learning
- 2. Calculus: derivative operators, minimization, convolution
- 3. Differential Equations: calculus of variations, Euler-Lagrange equations
- 4. Linear Algebra: change of basis, quadratic forms, transformations, eigenvectors
- 5. Geometry: pinhole camera model, camera anatomy, infinity
- 6. Numerical Methods: finite difference approximations, Taylor series, interpolation, least squares approximation

	General Principles	Ideas	Left-out	

What have we not covered?

- 1. Stereo Reconstruction
- 2. Optical Character and Handwritten Text Recognition (OCR and HTR)
- 3. Object Tracking
- 4. Traditional Object Detection
- 5. Traditional Segmentation

Which additional classes are offered?

- ► CS-568 Deep Learning
 - Comprehensive dive into the what, why and how of deep learning.
 - Applications of deep learning.
 - Sequential models for analyzing images and videos.

Research opportunities

- This course has introduced you to a variety of methods and problems in the area of CV.
- ► This course has *not prepared you fully* for research in CV.
 - That is a whole new ball game.
 - ► The course project might have nudged the earnest¹ student in the right direction.
 - To prepare yourself for research, the first step is to start devouring research papers.
- In case you are interested, contact us.

¹showing sincere and intense conviction

General Principles

Ide

Acknowledgements

- Thank you for your interest in this class.
- ► The TAs: Adeela Islam and Arbish Akram.
- Members of the CVML group.
- Joachim Weickert and Sohaib Khan.

Good luck in your future endeavours.