CS-570 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

6. The Structure Tensor

Corners

- ► Just like edges, corners are perceptually important.
- More compact summary of an image since corners are fewer than edge pixels.
- A patch around a corner pixel is different from all other surrounding patches.

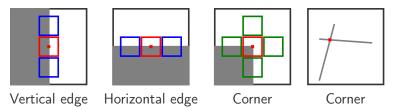


Figure: A patch containing a corner is different from all surrounding patches. Blue squares represent patches similar to the red patch. Green squares represent patches different from the red patch. Author: N. Khan (2021)

How to compare patches Sum-squared-distance (SSD)

▶ For two patches P and Q of size m × n pixels, their dissimilarity can be computed using a sum-of-squared distances

$$SSD(P, Q) = \sum_{i=1}^{m} \sum_{j=1}^{n} (P_{ij} - Q_{ij})^2$$

Alternatively, weighted dissimilarity can be computed as

$$SSD(P, Q) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} (P_{ij} - Q_{ij})^2$$

where weight w_{ij} determines the importance of location (i, j).

 For example, Gaussian weights give more importance to the central pixel difference.

Taylor's Approximation for 2D Functions

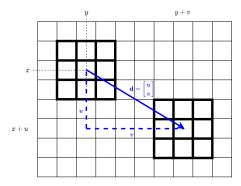
Recall that Taylor's approximation for 1D functions is

$$f(x+u) = f(x) + \frac{u}{1!}f'(x) + \frac{u^2}{2!}f''(x) + O(u^3)$$

► For 2D functions, a 2nd-order Taylor's approximation is

$$f(x + u, y + v) \approx f(x, y) + \underbrace{\frac{u}{1!} f_x(x, y) + \frac{v}{1!} f_y(x, y)}_{\text{1st-order}} + \underbrace{\frac{u^2}{2!} f_{xx}(x, y) + \frac{v^2}{2!} f_{yy}(x, y) + \frac{2uv}{2!} f_{xy}(x, y)}_{\text{2nd-order}}$$

- Let us consider patches of size 3 × 3 although the method works for patches of any size and shape.
- ► The color value of a pixel displaced from (x, y) by the direction vector d = (u, v)^T is I(x + u, y + v).



Weighted SSD between a patch at (x, y) and a patch displaced by the direction vector d = (u, v)^T is computed as

$$SSD(u, v) = \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (I(i+u, j+v) - I(i, j))^2$$

Using a 1st-order Taylor's approximation

$$I(i+u,j+v) \approx I(i,j) + uI_x(i,j) + vI_y(i,j)$$

▶ Weighted SSD can be approximated as

$$SSD(u, v) \approx \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (I(i + u, j + v) - I(i, j))^{2}$$

= $\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (I(i, j) + uI_{x}(i, j) + vI_{y}(i, j) - I(i, j))^{2}$
= $\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (uI_{x}(i, j) + vI_{y}(i, j))^{2} = \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (d^{T} \nabla I_{ij})^{2}$
= $\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (d^{T} \nabla I_{ij}) (d^{T} \nabla I_{ij})^{T} = \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} d^{T} \nabla I_{ij} \nabla I_{ij}^{T} d$
= $d^{T} \left(\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} \nabla I_{ij} \nabla I_{ij}^{T} \right) d = d^{T} A d$

• The 2 \times 2 matrix A is a weighted summation of the outer-products

$$\nabla I_{ij} \nabla I_{ij}^{\mathsf{T}} = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}_{ij}$$

► For Gaussian weights, A can be computed via Gaussian convolution

$$A = \begin{bmatrix} G_{\rho} * I_{x}^{2} & G_{\rho} * I_{x}I_{y} \\ G_{\rho} * I_{x}I_{y} & G_{\rho} * I_{y}^{2} \end{bmatrix}$$

- ► In this form *A* is known as the *structure tensor*.
- The structure tensor plays an important role in other areas of computer vision as well.

Corners

Corner Detection via Structure Tensor

- ▶ Basic idea: To find if pixel (*x*, *y*) is a corner, first find the direction in which patches become most dissimilar.
- ► That is, the direction d = (u, v)^T that maximises the SSD d^TAd from the patch centered at (x, y).

$$\mathbf{d}^* = \arg \max_{\mathbf{d}} \mathbf{d}^T A \mathbf{d} \text{ s.t. } \|\mathbf{d}\| = 1$$

where constraint $\|\mathbf{d}\| = 1$ ensures a non-trivial solution.

- Using the method of Lagrange multipliers, d* is the eigenvector of A corresponding to the larger eigenvalue (Take-home Quiz 2).
- The SSD in the direction of any eigenvector is the corresponding eigenvalue. Prove it.

Corner Detection via Structure Tensor

What do the eigenvalues of the structure tensor reveal about the local structure around a pixel?

$$\begin{array}{l} \lambda_{\mathsf{large}} \approx \lambda_{\mathsf{small}} \approx 0 \implies \mathsf{flat} \ \mathsf{region} \\ \lambda_{\mathsf{large}} \gg \lambda_{\mathsf{small}} \approx 0 \implies \mathsf{edge} \\ \lambda_{\mathsf{large}} > \lambda_{\mathsf{small}} \gg 0 \implies \mathsf{corner} \end{array}$$

▶ So a simple corner detection criterion could be $\lambda_{\text{small}} > \tau$.

Summary

- ► For 2D images, the 2 × 2 structure tensor is a powerful descriptor of local image regions.
- Eigenvector corresponding to larger eigenvalue represents the (local) direction of greatest rate of change in the image.
- Largest eigenvalue represents the SSD in that direction.
- Multiple uses in computer vision.