CS-570 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

7. Corner Detection

Corners

- ► Just like edges, corners are perceptually important.
- More compact summary of an image since corners are fewer than edge pixels.
- A patch around a corner pixel is different from all other surrounding patches.

Figure: A patch containing a corner is different from all surrounding patches. Blue squares represent patches similar to the red patch. Green squares represent patches different from the red patch. Author: N. Khan (2021)

Corner Detection via Structure Tensor

What do the eigenvalues of the structure tensor reveal about the local structure around a pixel?

$$\begin{array}{l} \lambda_{\mathsf{large}} \approx \lambda_{\mathsf{small}} \approx 0 \implies \mathsf{flat} \ \mathsf{region} \\ \lambda_{\mathsf{large}} \gg \lambda_{\mathsf{small}} \approx 0 \implies \mathsf{edge} \\ \lambda_{\mathsf{large}} > \lambda_{\mathsf{small}} \gg 0 \implies \mathsf{corner} \end{array}$$

▶ So a simple corner detection criterion could be $\lambda_{\text{small}} > \tau$.

Corner Detection via Structure Tensor

- But eigenvalue computation is a little expensive.
- Using the facts that
 - 1. $det(A) = A_{11}A_{22} A_{12}^2 = \lambda_{\text{large}}\lambda_{\text{small}}$, and
 - 2. $trace(A) = A_{11} + A_{22} = \lambda_{large} + \lambda_{small}$

popular corner detectors avoid eigenvalue computations.

 Popular corner detectors use a cornerness measure and then a detection criterion.

Method	Cornerness Measure	Detector
Harris	$\frac{det(A)}{trace(A)}$	$trace(A) > \tau$
Rohr	det (À)	det(A) > au

To avoid multiple detections, non-maxima suppression must be performed on the cornerness values in 8-neighourhoods or larger.

Corner Detection Algorithm

Input: Image 1.

Parameters:

- 1) Noise smoothing scale σ ,
- 2) Gradient smoothing scale ρ (should be greater than σ),

3) Threshold τ .

1. Compute Gaussian derivatives at noise smoothing scale σ

$$I_x = \frac{\partial G_\sigma}{\partial x} * I$$
 and $I_y = \frac{\partial G_\sigma}{\partial y} * I$

2. Compute the products

$$I_x^2$$
, I_y^2 and $I_x I_y$

3. Smooth the products at gradient smoothing scale ρ

$$G_{
ho} * I_x^2$$
, $G_{
ho} * I_y^2$ and $G_{
ho} * I_x I_y$

and construct structure tensor A at every pixel.

Corners

Corner Detection

4. Compute cornerness C(i,j) at every pixel as

Harris	Rohr	
$C_{ij} = \frac{A_{11}A_{22} - A_{12}^2}{A_{11} + A_{22}}$	$C_{ij} = A_{11}A_{22} - A_{12}^2$	

- 5. Perform non-maxima suppression in 8-neighbourhood on cornerness image *C*.
- 6. Find corner pixels by thresholding remaining local maxima via

Harris	Rohr	
$trace(A) = A_{11} + A_{22} > au$	$det(A) = A_{11}A_{22} - A_{12}^2 > \tau$	

Figure: Harris corners detected with $\sigma = 0.2$, $\rho = 2$ and $\tau = 90$ th percentile of trace values. Author: N. Khan (2018)

Figure: Harris corners detected with $\sigma = 0.5$, $\rho = 2$ and $\tau = 80$ th percentile of trace values. Author: N. Khan (2018)

Figure: Corners detected by Rohr's method with $\sigma = 1$, $\rho = 6$ and $\tau = 98$ th percentile of determinant values for **top row** and 95th for **bottom row**. Author: N. Khan (2018)

Original

Determinant(A)

Rohr Corners

Figure: Corners detected by Rohr's method with $\rho = 6$ and $\tau = 95$ th percentile of determinant values. Noise smoothness scale was $\sigma = 3$ for **top row** and $\sigma = 4$ for **bottom row**. Author: N. Khan (2018)

Corners depend on scale

- Structure tensors and therefore corner detection are not scale invariant.
- ► Therefore, corner detection should take place at multiple scales.
- ► This leads to the concept of a *scale space*.

Scale Space via Gaussian Pyramids

Figure: A Gaussian pyramid with 3 levels and 5 smoothing scales. **Top to bottom**: Subsampling in both dimensions by factor 2^i for i = 0, ..., 2. **Left to right**: Gaussian blurring with $\sigma = \sqrt{2}^i \sigma_0$ for j = 0, ..., 4 and $\sigma_0 = \sqrt{2}$. Author: N. Khan (2018)

Scale Space via Gaussian Pyramids

Figure: Corner detection in scale space obtained via Gaussian pyramids. Some corners are detected only at certain resolutions and certain smoothness scales. Corners that *persist across resolutions and smoothness scales* are called strong or stable corners. Author: N. Khan (2018)

Nazar Khan

Corners

Scale Space via Gaussian Pyramids

```
function makeGaussianPyramid(I,num_levels,num_scales,k,\sigma_0)
for i = 0 to num_levels-1
J = subsample(I, \frac{1}{2^i})
for s = 0 to num_scales-1
\sigma = k^s \sigma_0
GP[i, s] = J * G_{\sigma}
```