Quiz 1

Name: ______ Roll Number: _____

- 1. For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and matrices $\mathbf{M} \in \mathbb{R}^{k \times d}$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$, prove the following derivatives.
 - (a) (2 points) $\nabla_{\mathbf{x}}(\mathbf{y}^T\mathbf{x}) = \nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{y}) = \mathbf{y}$
 - (b) (3 points) $\nabla_{\mathbf{x}}(\mathbf{M}\mathbf{x}) = \mathbf{M}^T$
 - (c) (3 points) $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = (\mathbf{A} + \mathbf{A}^T)\mathbf{x}$
 - (d) (2 points) $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = 2\mathbf{A} \mathbf{x}$ when \mathbf{A} is symmetric