Name: \qquad Roll Number:

1. For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ and matrices $\mathbf{M} \in \mathbb{R}^{k \times d}$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$, prove the following derivatives.
(a) (2 points) $\nabla_{\mathbf{x}}\left(\mathbf{y}^{T} \mathbf{x}\right)=\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{y}\right)=\mathbf{y}$
(b) (3 points) $\nabla_{\mathbf{x}}(\mathbf{M x})=\mathbf{M}^{T}$
(c) $\left(3\right.$ points) $\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A x}\right)=\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x}$
(d) (2 points) $\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)=2 \mathbf{A} \mathbf{x}$ when \mathbf{A} is symmetric
