Name: _

Roll Number:

- 1. (5 points) For a symmetric, positive-definite matrix \mathbf{A} , show that the non-trivial maximizer of $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is the eigenvector of \mathbf{A} corresponding to the largest eigenvalue.
- 2. (1 point) Find the convolution mask that is convolved with the left image to give the results on the right?

	0	0	0	0	0	0	0	0	0	1										
0	0	0	0	0	0	0	0	0	0				0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	*	?] =	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0				0	-1	-1	0	0	1	1	0
0	0	0	1	1	1	1	0	0	0				0	-1	-1	0	0	1	1	0
0	0	0	1	1	1	1	0	0	0				0	-1	-1	0	0	1	1	0
0	0	0	1	1	1	1	0	0	0				0	-1	-1	0	0	1	1	0
0	0	0	0	0	0	0	0	0	0				0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0				0	0	0	0	0	0	0	0

3. (2 points) Write the separable versions of the following filters.

- 4. Let **I** be a $p \times q$ image and **M** an $m \times m$ convolution mask.
 - (a) (1 point) What is the cost of convolution?
 - (b) (1 point) What is the cost of convolution if **M** is separable?