Name: \qquad Roll Number: \qquad

1. (5 points) For a symmetric, positive-definite matrix \mathbf{A}, show that the non-trivial maximizer of $\mathbf{x}^{T} \mathbf{A} \mathbf{x}$ is the eigenvector of \mathbf{A} corresponding to the largest eigenvalue.
2. (1 point) Find the convolution mask that is convolved with the left image to give the results on the right?

0	0	0	0	0	0	0	0	0	0								
0	0	0	0	0	0	0	0	0	0								
0	0	0	1	1	1	1	0	0	0								
0	0	0	1	1	1	1	0	0	0								
0	0	0	1	1	1	1	0	0	0								
0	0	0	1	1	1	1	0	0	0								
0	0	0	0	0	0	0	0	0	0								
0	0	0	0	0	0	0	0	0	0	$* ?$							
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	$=$	0	0	0	0	0	0	0	0
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:										
0	0	0	0	0	0	0	0										
0	-1	-1	0	0	1	1	0										
0	-1	-1	0	0	1	1	0										
0	-1	-1	0	0	1	1	0										
0	-1	-1	0	0	1	1	0										
0	0	0	0	0	0	0	0										
0	0	0	0	0	0	0	0										

3. (2 points) Write the separable versions of the following filters.
a)

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

b)

$\frac{1}{8}$| -1 | 0 | 1 |
| :--- | :--- | :--- |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

4. Let \mathbf{I} be a $p \times q$ image and \mathbf{M} an $m \times m$ convolution mask.
(a) (1 point) What is the cost of convolution?
(b) (1 point) What is the cost of convolution if \mathbf{M} is separable?
