Name: \qquad Roll Number: \qquad

1. (1 point) Prove that using a 1st order Taylor's expansion for $f(x+h)$ yields

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+O(h)
$$

This is a derivative approximation using forward difference.
2. (1 point) Prove that using a 1st order Taylor's expansion for $f(x-h)$ yields

$$
f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+O(h)
$$

This is a derivative approximation using backward difference.
3. For edge detection in an image I,
(a) Using the partial derivative values I_{x} and I_{y}, write down the formulae for computing
i. (1 point) gradient magnitude
ii. (1 point) gradient direction
(b) The atan2 function returns angle in the range $\theta \in(-\pi, \pi)$ as shown in Figure 1(a).

(a)

(b)

Figure 1: Ranges for gradient direction.
i. (4 points) To quantize angle $\theta \in(-\pi, \pi)$ into 8 uniformly spaced bins, fill in the blanks for appropriate ranges of θ. Hint: The range $(-\pi, \pi)$ has been divided into 8 bins of the same size. Consider the range of angles provided below for the bins $q(\theta)=0$ and $q(\theta)=4$ and use them to compute the angle ranges for other bins.

$$
q(\theta)=\left\{\begin{array}{lll}
0 & \text { if }-\frac{\pi}{8}<\theta \leq \frac{\pi}{8} \\
1 & \text { if } & <\theta \leq \\
2 & \text { if } & <\theta \leq \\
3 & \text { if } & <\theta \leq \\
4 & \text { if }|\theta| \geq \frac{7 \pi}{8} & \\
5 & \text { if } & <\theta \leq \\
6 & \text { if } & <\theta \leq \\
7 & \text { if } & <\theta \leq-\frac{\pi}{8}
\end{array}\right.
$$

ii. (2 points) How can we convert angles returned by atan2 in the range $\theta \in(-\pi, \pi)$ to the range $\theta \in(0,2 \pi)$ measured in anti-clockwise direction as shown in Figure 1(b)?

