Name: \qquad Roll Number:

The sum-of-squared differences (SSD) in an arbitrary direction \mathbf{d} within an image patch is given by

$$
\operatorname{SSD}(\mathbf{d})=\mathbf{d}^{T} \mathbf{A d}
$$

where \mathbf{A} is a symmetric, positive definite 2×2 matrix called the structure tensor.

1. (5 points) Show that the SSD in the direction of any eigenvector of \mathbf{A} is the corresponding eigenvalue.
2. (5 points) Why is $\operatorname{det}(\mathbf{A})=\lambda_{\text {large }} \lambda_{\text {small }}$ a good indicator of corner pixels?
