MS-252 Linear Algebra

Nazar Khan

Department of Computer Science University of the Punjab

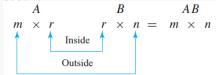
2. Matrix Arithmetic

Matrices

- ▶ Rectangular arrays of numbers with *m* rows and *n* columns.
- If m = n, we have a square matrix of order n.
- Entries $a_{11}, a_{22}, \ldots, a_{nn}$ constitute the main diagonal.
- Transpose by swapping rows and columns.
- In matrix arithmetic
 - size matters
 - A + B is valid only if dimensions are equal
 - A * B is valid only if dimensions match
 - order matters $(A * B \neq B * A \text{ generally})$

Matrix Multiplication

 Multiplication is valid if columns of first matrix are equal to rows of second.

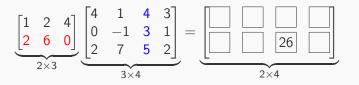


Multiplication is carried by taking the dot-product of row *i* of *A* with column *j* of *B*.

$$AB = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1r} \\ a_{21} & a_{22} & \cdots & a_{2r} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ir} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mr} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{r1} & b_{r2} & \cdots & b_{rj} & \cdots & b_{rn} \end{bmatrix}$$

$$(AB)_{ij} = a_{i1}b_{j1} + a_{i2}b_{j2} + \cdots + a_{in}b_{jn}$$

Matrix Multiplication



 $(AB)_{23} = a_{21}b_{31} + a_{22}b_{32} + \dots + a_{2n}b_{3n} = \mathbf{2}\cdot\mathbf{4} + \mathbf{6}\cdot\mathbf{3} + \mathbf{0}\cdot\mathbf{5} = \mathbf{26}$

Fill the rest.

3 ways of looking at a matrix

[- a ₁₁	a ₁₂	a ₁₃	a ₁₄		a ₁₁	a ₁₂	a ₁₃	a ₁₄ -]	a ₁₁	a_{12}	a ₁₃	a ₁₄ a ₂₄ a ₃₄
	a ₂₁	a ₂₂	a ₂₃	a ₂₄		a ₂₁	a ₂₂	a ₂₃	a ₂₄		a ₂₁	a ₂₂	a ₂₃	a ₂₄
	a ₃₁	a ₃₂	a ₃₃	a ₃₄		a ₃₁	a ₃₂	a ₃₃	a ₃₄		a ₃₁	a ₃₂	a 33	a ₃₄

Set of rows

Set of columns

Set of blocks (sub-matrices)

- Vector-matrix multiplication can be seen as a *linear combination* of matrix rows.
- Matrix-vector multiplication can be seen as a linear combination of matrix columns.
- Matrix-matrix multiplication can be seen as column-row expansion (sum of outer-products).

Matrix Form of a Linear System

Every linear system can be expressed in matrix-vector form and vice versa.

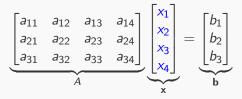
The linear system

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3$$

can also be written as $A\mathbf{x} = \mathbf{b}$



where A is called the *coefficient matrix*, \mathbf{x} is the vector of unknowns and \mathbf{b} is the vector of constants.

Nazar Khan

Trace

There are some operations/concepts that are defined \underline{only} for square matrices.

- Trace (sum of entries on the main diagonal)
- Determinant
- Inverse
- Identity

Matrix Arithmetic Properties

Assuming that the sizes of the matrices are such that the indicated operations can be performed, the following rules of matrix arithmetic are valid.

- $(a) \quad A+B=B+A$
- (b) A + (B + C) = (A + B) + C
- $(c) \quad A(BC) = (AB)C$
- $(d) \quad A(B+C) = AB + AC$
- $(e) \quad (B+C)A = BA + CA$
- $(f) \quad A(B-C) = AB AC$
- $(g) \quad (B-C)A = BA CA$
- $(h) \quad a(B+C) = aB + aC$
- $(i) \quad a(B-C) = aB aC$
- $(j) \quad (a+b)C = aC + bC$
- $(k) \quad (a-b)C = aC bC$
- $(l) \quad a(bC) = (ab)C$
- $(m) \quad a(BC) = (aB)C = B(aC)$

[Commutative law for matrix addition]

C [Associative law for matrix addition]

[Associative law for matrix multiplication]

[Left distributive law]

[Right distributive law]

Matrix Multiplication Be Careful!

- While most matrix arithmetic follows the rules of basic scalar arithmetic, there are some important exceptions.
- There is no such thing as matrix division!

Scalar	Matrix				
ab = ba	AB eq BA				
$ab = ac \implies b = c$	$AB = AC \implies B = C$				
$ab = 0 \implies a = 0$ and/or $b = 0$	$AB = 0 \implies A = 0 \text{ or } B = 0$				
$a^{-1} = \frac{1}{a}$	$\mathcal{A}^{-1} eq rac{1}{\mathcal{A}}$				
$(a+b)^2 = a^2 + 2ab + b^2$	$(A+B)^2 \neq A^2 + 2AB + B^2$				

Identity Matrix

- Identity matrix is a square, diagonal matrix containing only 1s on the diagonal and 0s elsewhere.
- I_n denotes the $n \times n$ identity matrix.
- ▶ Plays the role that 1 plays in scalar arithmetic.
- $AI_n = A$ and $I_n A = A$.
- Reduced row-echelon form of a square n × n matrix is either I_n or contains a row of zeros.

Properties

Matrix Inverse

Content in this slide applies only to square matrices.

- ► If A is a square matrix and if there exists another square matrix B such that AB = BA = I, then A is invertible (or non-singular) and B is the inverse of A.
- $\begin{bmatrix} 3 & 5\\ 1 & 2 \end{bmatrix}$ is an inverse of $\begin{bmatrix} 2 & -5\\ -1 & 3 \end{bmatrix}$. Verify it.
- Any matrix with a column (or row) of zeros is not invertible. Why?
- If A and B are invertible matrices with the same size, then AB is invertible and (AB)⁻¹ = B⁻¹A⁻¹. Prove it.
- Similarly, $(A_1A_2A_3...A_n)^{-1} = A_n^{-1}...A_2^{-1}A_1^{-1}$.

Powers of a matrix

Content in this slide applies only to square matrices.

►
$$A^0 = I$$

For any integer
$$n > 0$$
, $A^n = AA...A$.

• Also,
$$A^{-n} = \underbrace{A^{-1}A^{-1} \dots A^{-1}}_{n}$$
.

$$\blacktriangleright A^r A^s = A^{r+s}.$$

$$\blacktriangleright (A^r)^s = A^{rs}.$$

► For non-singular A, kA is invertible for any nonzero scalar k, and $(kA)^{-1} = \frac{1}{k}A^{-1}$. Verify that their product yields *I*.

n

Properties of the Matrix Transpose

$$(A^{T})^{T} = A$$

$$(A + B)^{T} = A^{T} + B^{T}$$

$$(A - B)^{T} = A^{T} - B^{T}$$

$$(kA)^{T} = kA^{T}$$

$$\blacktriangleright (AB)^T = B^T A^T$$

$$(A_1A_2A_3\ldots A_n)^T = A_n^T \ldots A_2^T A_1^T.$$

•
$$(A^{T})^{-1} = (A^{-1})^{T}$$
. Verify it.

Questions

► Exercise 1.3

▶ 7,8,11,13,17,25,27,28,30,35,36, all true-false questions.