CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Lectures 4-7 Neural Networks March 3, 7, 9, 14 2016

ouncements

- From now onwards, lectures will take place on Mondays and Wednesdays from 8:15 am till 9:45 am.
- Project 1a is due on Monday, 7-th March.
 - ► Relevant material has been placed on \\printsrv.
 - Try to finish by tomorrow.
 - ► Each sample is a 784 × 1 vector that represents a 28 × 28 image. To visualise the k-th training sample as an image, you may use the following commands:

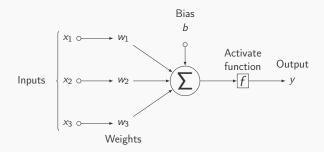
```
imagesc(reshape(train_x(k,:),28,28)');
axis image;
colormap gray;
```

Logistic Regression Tips

- In case you are having memory issues or training takes a lot of time, you might want to use the following tips:
 - Type in the command 'doc spdiags'
 - Do not use the inv() function to for matrix inverse. Use the operator. For more help, consult Google or Matlab documentation
- Also, don't forget to homogenise the inputs by appending a 1 at the end of each input. This will absorb the bias term.
- ► Lastly, if you start getting a warning message like "Warning: Matrix is close to singular or badly scaled", then
 - first look at the difference between Exercises 1.1 and 1.2 from Chapter 1 and their solutions.
 - then look at the programming solutions to both problems. We have done both the exercises as well as their programming solutions in CS 567.

- So far, we have learned \mathbf{w}^* for mapping inputs $\mathbf{x} \in \mathbb{R}^D$ to targets \mathbf{t} .
- ▶ Often, working in a transformed space $\phi \in \mathbb{R}^M$ makes it easier to learn the mapping.
- ▶ However, not all mappings are useful for the problem at hand. Is there an optimal mapping ϕ^* ?
- Neural networks learn the optimal mapping ϕ^* and also the optimal parameters \mathbf{w}^* .

Neural Networks The Neuron



► The function of a biological neuron can be modelled as $y = f\left(\sum_{j} w_{j}x_{j} + b\right)$.

Neural Networks The Neuron

▶ Model the output of the *k*-th neuron as

$$y_k = f(a_k) = f(\mathbf{w}_k^T \mathbf{x}) = f\left(\sum_j w_{kj} x_j\right)$$
 where

- \triangleright The x_i constitute values of input signals feeding into the neuron.
- ▶ The w_{kj} are weights determining the importance given to input x_i by this neuron.
- Dot-product a_k = ∑_j w_{kj}x_j is called the activation.
 f(·) is called the activation function. Determines behaviour of the neuron in response to its activation.
- ▶ The perceptron that we studied earlier is a very simple neuron model with f being the step function.

$$f(a) = \begin{cases} 1 & \text{if } a \ge 0 \\ 0 & \text{if } a < 0 \end{cases} \tag{1}$$

▶ The linear models that we covered can be represented as

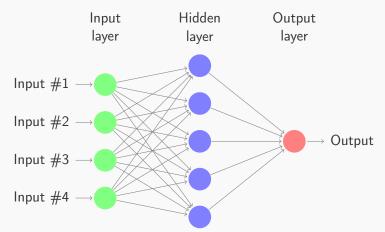
$$y_k(\mathbf{x}, \mathbf{W}) = f(\mathbf{w}_k^T \phi(\mathbf{x})) = f\left(\sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})\right)$$

where y_k is the k-th output and index j starts from 0 to reflect bias inclusion.

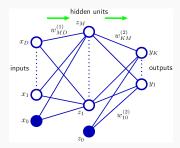
- ▶ Each $\phi_i(x)$ can be seen as a *basis function*.
- ➤ So far, the basis functions were fixed. Now we *adapt* them to the problem.

- ▶ Model $\phi_j(\mathbf{x})$ as a non-linear function $h(a_j)$ where activation $a_j = \mathbf{w}_j^T \mathbf{x}$ with adjustable parameters \mathbf{w}_j .
- ► So the *k*-th output can be written as

$$y_k(\mathbf{x}, \mathbf{W}) = f(\mathbf{a}_k) = f(\mathbf{w}_k^T \phi(\mathbf{x})) = f\left(\sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})\right)$$
$$= f\left(\sum_{j=0}^M w_{kj} h(\mathbf{a}_j)\right)$$
$$= f\left(\sum_{j=1}^M w_{kj} h\left(\sum_{j=0}^D w_{ji} x_j\right)\right)$$



These computations can be visualised graphically as *forward* propagation of information through the so-called *neural network*.



A two-layer neural network.

- 3 neuron types:
 - ▶ input *x_i*
 - ▶ hidden *z*_i
 - output y_k
- 2 weight layers:
 - ▶ hidden-input w_{ii}⁽¹⁾
 - output-hidden $w_{ki}^{(2)}$
- To differentiate between different layer parameters, we can write

$$y_k(\mathbf{x}, \mathbf{W}) = f\left(\sum_{j=1}^{M} w_{kj}^{(2)} h\left(\sum_{i=0}^{D} w_{ji}^{(1)} x_i\right)\right)$$

Neural Networks As Multilayer Perceptrons

- ► The computation $y_k(\mathbf{x}, \mathbf{W}) = f\left(\sum_{j=1}^M w_{kj}^{(2)} h\left(\sum_{i=0}^D w_{ji}^{(1)} x_i\right)\right)$ can be viewed in two stages:
 - **1.** Compute $z_j = h(\mathbf{w}_j^T \mathbf{x})$, followed by
 - $2. \ y_k = f(\mathbf{w}_k^T \mathbf{z}).$
- Both stages resemble the perceptron model.
- ► Therefore, another name for such neural networks is *multilayer* perceptrons or simply *MLP*.
- However, there is a key difference:
 - Perceptron uses a non-differentiable step-function non-linearity.
 - ► MLP uses a differentiable sigmoidal non-linearity. So we can train via gradient based approaches.
- ► Therefore, despite the name, MLPs never use perceptrons!

Neural Networks As Universal Approximators

Introduction

- ▶ Neural networks are considered to be *universal approximators*.
- A two-layer network with linear outputs can uniformly approximate any continuous function on a compact input domain to arbitrary accuracy.
 - Provided that the network has a sufficiently large number of hidden units.

Neural Networks for Regression Univariate

- ▶ In the polynomial fitting example from Chapter 1, given inputs and targets $\{x_n, t_n\}$, we wanted to find the optimal parameters w* of the polynomial that best fits the data.
- ▶ Assuming i.i.d data and $t_n \sim \mathcal{N}(y(\mathbf{x}_n, \mathbf{w}), \beta^{-1})$, we wrote the likelihood function whose maximisation corresponded to minimisation of the SSE function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(\mathbf{x}_n, \mathbf{w}) - t_n)^2$$

▶ By replacing the polynomial in function $y(x_n, \mathbf{w})$ by the neural network function, we can minimise $E(\mathbf{w})$ to find optimal parameters \mathbf{w}^* of the neural network.

Neural Networks for Regression Multivariate

 Similarly, for multivariate targets, assuming multivariate Gaussian density leads to the SSE function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n||^2$$

where
$$y_k = a_k = \mathbf{w}_k^T \mathbf{x}$$
.

Notice and prove that

$$\frac{\partial E_n}{\partial a_k} = \underbrace{(y_{kn} - t_{kn})}_{\text{error}_n}$$

 Similarly, for binary classification, we can assume a Bernoulli distribution on targets which leads to minimisation of the cross-entropy function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} (t_n \ln y(\mathbf{x}_n, \mathbf{w}) + (1 - t_n) \ln(1 - y(\mathbf{x}_n, \mathbf{w})))$$

where
$$y(\mathbf{x}_n, \mathbf{w}) = P(C_1 | \mathbf{x}_n) = \sigma(\mathbf{a}) = \sigma(\mathbf{w}^T \mathbf{x}_n)$$
.

Notice (and prove) that

$$\frac{\partial E_n}{\partial a} = \underbrace{(y_n - t_n)}_{\text{error}_n}$$

Neural Networks for Classification Multiclass

 For multiclass classification, we can minimise the multiclass cross-entropy function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} (t_{kn} \ln y_k(\mathbf{x}_n, \mathbf{w}))$$

where
$$y_k(\mathbf{x}_n, \mathbf{w}) = P(\mathcal{C}_k | \mathbf{x}_n) = \frac{e^{a_k}}{\sum_{i=1}^K e^{a_i}}$$
 and $a_k = \mathbf{w}_k^T \mathbf{x}$.

Notice (and prove) that

$$\frac{\partial E_n}{\partial a_k} = \underbrace{(y_{kn} - t_{kn})}_{\text{error}_n}$$

▶ In the following we will denote the error $\frac{\partial E}{\partial a_k}$ as δ_k .

Neural Networks for Classification

- ▶ Note that we can learn classifiers via SSE minimisation also, but the cross-entropy formulations
 - 1. can be derived probabilistically,
 - 2. train faster, and
 - 3. generalise better.

Optimisation

- ▶ For optimisation, we notice that \mathbf{w}^* must be a *stationary point* of $E(\mathbf{w})$.
 - Minimum, maximum, or saddle point.
 - A saddle point is where gradient vanishes but point is not an extremum (Example).
- The goal in neural network minimisation is to find a local minimum.
- A global minimum, even if found, cannot be verified as globally minimum.
- Due to symmetry, there are multiple equivalent local minima. Reaching any suitable local minimum is the goal of neural network optimisation.
- ► Since there are no analytical solutions for w*, we use iterative, numerical procedures.

Optimisation

- Options for iterative optimisation
 - Online methods
 - Stochastic gradient descent
 - Stochastic gradient descent using mini-batches
 - Batch methods
 - Batch gradient descent
 - Conjugate gradient descent
 - Quasi-Newton methods
- ► Online methods
 - converge faster since parameter updates are more frequent, and
 - have greater chance of escaping local minima because stationary point w.r.t to whole data set will generally not be a stationary point w.r.t an individual data point.
- Batch methods: Conjugate gradient descent and quasi-Newton methods
 - ▶ are more robust and faster than batch gradient descent, and
 - decrease the error function at each iteration until arriving at a minimum.

Backpropagation

- ▶ For all gradient based methods, however, we must first compute the gradient $\nabla_{\mathbf{w}} E(\mathbf{w})$.
- We have seen that many error functions of practical interest can be written as a sum of terms

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

So the essential gradient is $\nabla_{\mathbf{w}} E_n(\mathbf{w})$ which we write in its complete form $\nabla_{\mathbf{w}} E(\mathbf{y}(\mathbf{x}_n, \mathbf{w}))$.

Backpropagation

► For the output layer weights

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}} = \delta_k z_j$$

► For the hidden layer weights, using the chain rule

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \underbrace{\sum_{k=1}^K \underbrace{\frac{\partial E}{\partial a_k} \underbrace{\frac{\partial a_k}{\partial z_j} \underbrace{\frac{\partial z_j}{\partial a_j} \underbrace{\frac{\partial a_j}{\partial w_{ji}}}}_{\delta_i}}_{\delta_i} \underbrace{\frac{\partial a_j}{\partial w_{ji}}}_{\chi_i} = \delta_j \chi_i$$

► For each layer, notice the familiar form

$$gradient = error \times input$$

Backpropagation

▶ It is important to note that

$$\delta_j = h'(a_j) \sum_{k=1}^K \delta_k w_{kj}$$

yields the error δ_j at hidden neuron j by backpropagating the errors δ_k from all output neurons that use the output of neuron j.

- More generally, compute error δ_j at a layer by backpropagating the errors δ_k from next layer.
- Hence the names error backpropagation, backpropagation, or simply backprop.
- Very useful machine learning technique that is not limited to neural networks.

$$\delta_j^{(1)} = h'(a_j) \sum_{k=1}^K \delta_k^{(2)} w_{kj}$$

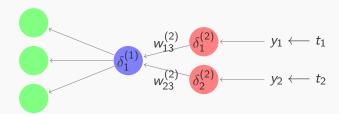


Figure: Visual representation of backpropagation of delta values of layer l+1 to compute delta values of layer l.

- 1. Forward propagate the input vector \mathbf{x}_n to compute activations and outputs of every neuron in every layer.
- **2.** Evaluate δ_k for every neuron in output layer.
- 3. Evaluate δ_j for every neuron in every hidden layer via backpropagation.
- **4.** Compute derivative of each weight via $\delta \times$ input.
- Update each weight.

Background Math A(-1,1) sigmoidal function

- ▶ Since range of logistic sigmoid $\sigma(a)$ is (0,1), we can obtain a function with (-1,1) range as $2\sigma(a)-1$.
- ▶ Another related function with (-1,1) range is the tanh function.

$$\tanh(a) = 2\sigma(2a) - 1 = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

where σ is applied on 2a.

- ▶ Preferred over logistic sigmoid as activation function h(a) of hidden neurons. (Read Yann LeCun's "Efficient Backprop" paper to understand why.)
- ▶ Just like the logistic sigmoid, derivative of tanh(a) is simple: $1 tanh^2(a)$. (Prove it.)

Backpropagation A Simple Example

- ▶ Two-layer MLP for multivariate regression from $\mathbb{R}^D \longrightarrow \mathbb{R}^K$.
- ▶ Linear outputs $y_k = a_k$ with SSE $E_n = \frac{1}{2} \sum_{k=1}^K (y_k t_k)^2$.
- ▶ M hidden neurons with $tanh(\cdot)$ activation functions.

Forward propagation

Backpropagate

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$

$$\delta_{j} = (1 - z_{j}^{2}) \sum_{k=1}^{K} w_{kj}^{(2)} \delta_{k}$$

$$z_{j} = \tanh(a_{j})$$

$$y_{k} = \sum_{j=0}^{M} w_{kj}^{(2)} z_{j}$$

$$\delta_k = y_k - t_k$$

▶ Compute derivatives $\frac{\partial E_n}{\partial w_{ji}^{(1)}} = \delta_j x_i$ and $\frac{\partial E_n}{\partial w_{kj}^{(2)}} = \delta_k z_j$.

 Numerical derivatives can be computed via finite central differences

$$\frac{\partial E_n}{\partial w_{ji}} = \frac{E_n(w_{ji} + \epsilon) - E_n(w_{ji} - \epsilon)}{2\epsilon} + O(\epsilon^2)$$

- Analytical derivatives computed via backpropagation must be compared with numerical derivatives for a few examples to verify correctness.
- Any implementation of analytical derivatives (not just backpropagation) must be compared with numerical derivatives.
- Notice that we could have avoided backpropagation and computed all required derivatives numerically.
 - ▶ But cost of numerical differentiation is $O(W^2)$ while that of backpropagation is O(W) where W is the total number of weights (and biases) in the network. (Why?)

Backpropagation for MLPs

- Implement the backpropagation algorithm for training an MLP.
 - Code up a generic implementation.
 - Verify correctness of analytical derivatives.
 - Understand the experiment and network used for Figure 5.3 in Bishop's book.
 - ▶ Regenerate Figure 5.3 using your implementation.
- Submit your_roll_number_MLP.zip containing
 - code,
 - generated image, and
 - report.txt/pdf explaining your results.
- ▶ Due Monday (March 21, 2016 before 5:30 pm) on \\printsrv.

Regularization in Neural Networks

- Recall that over-fitting can be lessened via regularization.
 - **1.** Penalise magnitudes of weights: $\tilde{E}(\mathbf{w}) = E(\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$.
 - 2. Separately penalise magnitudes of weights of each layer: $\tilde{E}(\mathbf{w}) = E(\mathbf{w}) + \sum_{l=1}^{L} \frac{\lambda_{l}}{2} \mathbf{w}^{(l)}^{T} \mathbf{w}^{(l)}$.
 - 3. Early stopping by checking $E(\mathbf{w})$ on a validation set. Stop when error on validation set starts increasing.
 - **4.** Tangent propagation: $\tilde{E}(\mathbf{w}) = E(\mathbf{w}) + \underbrace{\frac{\partial y}{\partial x}}_{\text{rough idea}}$.
 - **5.** Training with transformed data.
 - Building invariance into the network structure. We cover this in the next lecture on Convolutional Neural Networks.