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GMM Parameter Estimation

Announcement

I Forward propagation implementation of your CNN project is
due on Monday, May 2nd before 5:30 pm.

I Place your implementation on \\printsrv using your roll
number.

I This submission represents 25% of the project’s grade.
I When the first MNIST training set image is placed at the

input layer, your network should output 10 numbers.
I When weights are initialised randomly using the provided seed

for random number generation, the 10 outputs should match
the outputs that I get for my network.
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Gaussian Mixture Models

I We have already seen that multi-modal densities cannot be
modelled via a uni-modal Gaussian.

I They can be modelled via mixtures of Gaussians which are
simply linear superpositions of uni-modal Gaussians

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

where the mixing coefficients πk satisfy

0 ≤ πk ≤ 1
K∑

k=1

πk = 1

I We will now derive the mixture density p(x) using latent
variables.
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Gaussian Mixture Models
Latent Variable View

I Similar to the K-means approach, let us append our observed
variable x with a latent variable z using 1-of-K coding.

I Using elementary probability

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x|z)

I However, this time we use probabilities (soft assignment)

p(zk = 1) = πk

I Due to the 1-of-K representation

p(z) =
K∏

k=1

πzkk

and conditional probability

p(x|z) = p(x|zk = 1) = N (x|µk ,Σk)
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Gaussian Mixture Models
Latent Variable View

I Therefore, the latent variable view also yields the Gaussian
Mixture Model (GMM)

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk ,Σk)

I More importantly, complicated/multi-modal p(x) has been
modelled using simple/uni-modal p(x|z).

I This powerful idea extends beyond Gaussian mixtures.
I Mixtures of insert_your_favourite distribution.
I Mixtures of linear regression.
I Mixtures of logistic regression.
I . . .
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Gaussian Mixture Models
Responsibilities

I p(x) is the marginal density that we are looking to model.
I p(x|zk = 1) is the component conditional density. That is,

probability density of x according to component k .
I p(zk = 1) is the prior probability of component k .
I p(zk = 1|x) is the posterior probability of component k .

I Can be viewed as the responsibility that component k takes for
explaining observation x.

I Can be computed via Bayes’ theorem

p(zk = 1|x) = p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

I We will denote responsibility by rk = p(zk = 1|x).
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Gaussian Mixture Models
Parameter Estimation

I The latent variable view of GMMs suggests iterative,
alternating optimisation.

I Given i.i.d. data {x1, . . . , xN} and an integer K > 1, find
mixing coefficients {πk} and Gaussian parameters {µk} and
{Σk}.

I Likelihood is given by
∏N

n=1
∑K

k=1 πkN (xn|µk ,Σk).

I Log-likelihood is given by
∑N

n=1 ln
(∑K

k=1 πkN (xn|µk ,Σk)
)
.

I Notice that the summation in the mixture model prevents the
natural logarithm from cancelling out the Gaussian
exponential. So, no closed form solution.

I Solution 1: Gradient ascent.
I Solution 2: Alternating optimisation.
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Gaussian Mixture Models
Estimation of µk

I Using maximum likelihood

0 ≡ ∂ ln p(X|π,µ,Σ)

∂µk

=⇒ 0 = −
N∑

n=1

πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)︸ ︷︷ ︸

rnk

Σk(xn − µk)

=⇒ µk =

∑N
n=1 rnkxn∑N
n=1 rnk

=

∑N
n=1 rnkxn
Nk

I Notice the similarity with K-means. The only difference here is
that the hard assignments have been replaced by soft
responsibilities.
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Gaussian Mixture Models
Estimation of Σk

I Similarly

0 ≡ ∂ ln p(X|π,µ,Σ)

∂Σk

=⇒ Σk =
1
Nk

N∑
n=1

rnk(xn − µk)(xn − µk)
T

I This is similar to the result for fitting a single Gaussian but
now each data point is weighted by the responsibility rnk .
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Gaussian Mixture Models
Estimation of πk

I Maximisation with respect to πk is a constrained maximisation
since πk correspond to probability values.

I So we maximise the Lagrangian

L(X,π,µ,Σ, λ) = ln p(X|π,µ,Σ) + λ

(
K∑

k=1

πk − 1

)

by setting the gradient to 0

0 ≡ ∂L(X,π,µ,Σ)

∂πk

=⇒ 0 =
N∑

n=1

N (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

+ λ
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I Multiplying both sides by πk and then summing both sides
over k yields λ = −N.

I Substituting λ = −N and rearranging yields

πk =
Nk

N

I In words, mixing coefficient for component k is given by the
average responsibility that it takes for explaining the training
data points.
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Gaussian Mixture Models
Parameter Estimation

I Notice that solutions for µk ,Σk and πk are dependent on the
responsibilities rnk .

I However, the responsibilities depend on µk ,Σk and πk .
I We can now present the alternating optimisation algorithm for

GMMs.
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Alternating Optimisation for GMMs I

Data: Data points {x1, . . . , xN}, integer K > 1.
Result: Component parameters {µk ,Σk}, mixing coefficients {πk}

1. Choose some initial values for µk ,Σk , πk

2. Fix parameters, update responsibilities rnk = πkN (x|µk ,Σk )∑K
j=1 πjN (x|µj ,Σj )

3. Fix responsibilities, update parameters

µnew
k =

∑N
n=1 rnkxn
Nk

where Nk =
N∑

n=1

rnk

Σnew
k =

1
Nk

N∑
n=1

rnk(xn − µnew
k )(xn − µnew

k )T

πnew
k =

Nk

N
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Alternating Optimisation for GMMs II

4. Evaluate log-likelihood

ln p(X|π,µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (xn|µk ,Σk)

)

and check for convergence of either log-likelihood or
parameters. If not converged, return to step 2.
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Alternating Optimisation for GMMs

I Each iteration increases (or retains) the value of the
log-likelihood.

I Therefore, convergence to (local) maximum is guaranteed.
I This algorithm has a name – Expectation Maximisation (EM).

I We will cover it in detail in next lecture.

I Converges slower than K-means and performs more
computations per-iteration.

I Usually a good idea to initialise EM by the result of K-means.
I Set µk to the k-th K-means cluster center.
I Set Σk to the data covariance matrices for k-th K-means

cluster.
I Set πk to the fraction of points assigned by K-means to cluster

k .
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Alternating Optimisation for GMMs
Singularity Avoidance

I Log-likelihood equals infinity if any Gaussian component
‘collapses ’to a training data point. (Why?)

I This represents a pathological condition or singularity.
I Care must be taken to check if that has happened or is close

to happening.
I If so, the collapsing component should be reset to some other

randomly chosen µk and large Σk and the optimisation should
proceed as before.
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