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We have seen that K-means and GMMs are examples of latent
variable models.

Specifically for GMMs, we have seen an incremental algorithm
for learning the parameters via ML.

That algorithm is actually an instance of a powerful framework
called Expectation-Maximisation (EM).

EM is used for solving latent variable problems via ML.

We will now present a more general explanation of the EM
algorithm.
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» Maximum likelihood is equivalent to maximising the
log-likelihood In p(X|8).

» Using the sum-rule

In p(X|0) = <przye>

» Maximisation is no longer straight-forward since In is
‘blocked’by the summation.

» So we take another approach.
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We will denote {X,Z} as the complete dataset.

We will denote {X} as the incomplete dataset.

The goal now is to maximise the complete-data log-likelihood
function p(X,Z|0).

But for that we need to know the values of Z which are

unobserved. What can be computed about Z, however, is the
posterior p(Z|X, ).

So instead of the uncomputable value of log-likelihood, the
next best computable number would be its expected-value
under the posterior p(Z|X, 0).
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This yields the E-step of the EM algorithm.

Ezix goa[In p(X, Z|6)] = > p(Z|X,0°) In p(X, Z|)
V4

Since we are eventually interested in optimal parameters 8* we
treat this expectation as a function of 6 and denote it by
Q(8,6°7).

The M-step corresponds to maximising this expectation

0" = arg max (6, 6°4)

In short, EM replaces the log-likelihood by the expected
log-likelihood and maximises it.

Each EM cycle either moves toward or stays at a local
maximum of In p(X|8).
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The General EM Algorithm

Goal is to maximise likelihood p(X|@) with respect to 6 by
introducing joint distribution p(X, Z|@) involving latent variables Z.

1.
2.
3.

Choose initial 6°'4
E-step: Evaluate p(Z|X, 6°9)

M-step: Obtain new estimate 8" by maximising the
expectation Q(6, §°'¢)

0" = arg max Q(6,6°%)

where Q(8,0°9) = 3", p(Z|X,6°4) In p(X, Z|0).

. Check for convergence of either log-likelihood or parameters. If

not converged, then
eold L gnew (1)

and return to step 2.
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Extensions of EM

» EM for MAP estimation via prior p(6) amounts to modifying
the M-step only.

0" = arg max Q(6,6°) + p(6)

» For problems with ‘difficult’ M-step, maximisation can be
replaced by a step that just increases Q(0, 8°'9). This is
known as the Generalised EM algorithm.
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Proof of Convergence of EM
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