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Combining Models

I So far, we have seen how to model complicated machine
learning problems by combining simpler models.

I Boosting for learning a strong classifier by sequentially learning
weak classifiers.

I Gaussian mixture models for modelling (unconditional) density
p(x).

I In this lecture, we will model conditional density p(t|x) by
combining simpler models

I For continuous t, we obtain a mixture of linear regression
models.

I For discrete t, we obtain a mixture of logistic regression
models.

I As before, parameter learning for mixture models will be
achieved by the EM algorithm.
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Linear Regression Recap

I We have already covered the probabilistic perspective of linear
regression in our polynomial fitting example.

I We assumed that target t was given by a deterministic
function y(x,w) with additive Gaussian noise. That is

t = y(x,w) + ε

where ε ∼ N (0, β−1).
I Therefore, we wrote the conditional density of the target as

p(t|x,w, β) = N (t|y(x,w), β−1)
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Linear Regression Recap

I Likelihood for i.i.d data {(x1, t1), . . . , (xN , tN)} can be written
as

N∏
n=1

N (tn|wTφ(xn), β−1)

I Log-likelihood becomes

N

2
lnβ − N

2
ln(2π)− β 1

2

N∑
n=1

{tn −wTφ(xn)}2︸ ︷︷ ︸
SSE

I Therefore, maximisation of log-likelihood with respect to w is
equivalent to minimisation of SSE function.
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Linear Regression Recap

I Gradient with respect to w is
∑N

n=1{tn −wTφ(xn)}φ(xn)
T .

I Equating gradient to the 0 vector

0 =
N∑

n=1

tnφ(xn)
T −wT

ML

(
N∑

n=1

φ(xn)φ(xn)
T

)

I By converting to a pure matrix-vector notation, we found the
maximum-likelihood solution for linear regression as

wML = (ΦTΦ)−1ΦT︸ ︷︷ ︸
Φ†

t

where Φ denoted the design matrix and t denoted the vector
of all N target values.
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EM Algorithm Recap

Goal is to maximise likelihood p(X|θ) with respect to θ by
introducing joint distribution p(X,Z|θ) involving latent variables Z.

1. Choose initial θold

2. E-step: Evaluate p(Z|X,θold)

3. M-step: Obtain new estimate θnew by maximising the
expectation Q(θ,θold)

θnew = argmax
θ
Q(θ,θold)

where Q(θ,θold) =
∑

Z p(Z|X,θold) ln p(X,Z|θ).
4. Check for convergence of either log-likelihood or parameters. If

not converged, then

θold ← θnew

and return to step 2.
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Mixture of linear regression models I

I Fitting a single linear function to data being generated from
multiple sources gives very poor results.

I Instead of a single Gaussian, we now model the conditional
density of targets tn by a mixture of K Gaussians

p(tn|xn,θ) =
K∑

k=1

πkNk(tn|y(xn,wk), β
−1
k )

where wk are the parameters of the linear function
representing the mean of the k-th Gaussian component and
β−1
k is the precision of that component.

I Notice that this is a mixture of conditional Gaussians p(t|x)
and therefore different from the standard Gaussian Mixture
Model which uses marginal densities p(x).
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Mixture of linear regression models II

I For i.i.d data (X, t), log-likelihood can therefore be written as

ln p(t|X,θ) = ln

(
N∏

n=1

p(tn|xn,θ)

)

=
N∑

n=1

ln

(
K∑

k=1

πkNk(tn|y(xn,wk), β
−1
k )

)

where the summation over k ‘blocks’the natural logarithm
from acting on the exponential function.

I As in the case of GMMs, we maximise log-likelihood by the
EM algorithm.

I For that we need to view the problem in terms of latent
variables.
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Mixture of linear regression models III

I Let znk = 1 imply that training data point n was generated by
the k-th source (model component).

I Then for every observed tn there is a corresponding
K -dimensional vector zn with 1-of-K coding.

I Since we do not know how the data was generated, the zn are
unobserved/hidden/latent variables.
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Mixture of linear regression models IV

I Log-likelihood for complete data (observed + unobserved) can
be written as

ln p(t,Z|X,θ) = ln

(
N∏

n=1

p(tn, zn|xn,θ)

)

= ln

(
N∏

n=1

K∏
k=1

{πkNk(tn|y(xn,wk), β
−1
k )}znk

)

=
N∑

n=1

K∑
k=1

znk ln
(
πkNk(tn|y(xn,wk), β

−1
k )
)

which is not computable since we do not know the values of
the latent variables Z.
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Mixture of linear regression models V

I However, expected log-likelihood for complete data is
computable if model parameters θ are known. This is the
E-step.

Q(θ,θold) = EZ|t[ln p(t,Z|X,θ)]

=
N∑

n=1

∑
zn

K∑
k=1

p(znk |tn)znk ln
(
πkNk(tn|y(xn,wk), β

−1
k )
)

=
N∑

n=1

K∑
k=1

p(znk = 1|tn)︸ ︷︷ ︸
rnk

ln
(
πkNk(tn|y(xn,wk), β

−1
k )
)

where responsibilities rnk are computed using Bayes’ theorem

rnk =
p(znk = 1)p(tn|znk = 1)∑K
j=1 p(znj = 1)p(tn|znj = 1)

=
πkNk(tn|y(xn,wk), β

−1
k )∑K

j=1 πjNj(tn|y(xn,wj), β
−1
j )
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Mixture of linear regression models VI

I In the M-step, we fix the responsibilities and update the
parameters θ = {πk ,wk , βk}.

I Since the mixing coefficients πk represent probabilities, they
are optimised for via Lagrange multipliers to yield

π∗k =
Nk

N
=

∑N
n=1 rnk
N

I Optimal regression weights wk are obtained as the solution to
a weighted least-squares problem

w∗k =
(
ΦTRkΦ

)−1
ΦTRkt

where Rk = diag(rnk) is an N × N diagonal matrix of weights
that is recomputed at each E-step.
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Mixture of linear regression models VII

I Finally, optimal precision βk is obtained as

1
β∗k

=

∑N
n=1 rnk(tn −w∗Tk φn)

2∑N
n=1 rnk

=
1
Nk

N∑
n=1

rnk(tn −w∗Tk φn)
2
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Mixture of linear regression models
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EM Algorithm for Mixutre of Linear Regression Models I

Data: Data points {(x1, t1), . . . , (xN , tN)}, integer K > 1.
Result: Component parameters {wk , βk}, mixing coefficients {πk}
1. Choose some initial values for wk , βk , πk

2. Fix parameters, update responsibilities

rnk =
πkNk (tn|y(xn,wk ),β

−1
k )∑K

j=1 πjNj (tn|y(xn,wj ),β
−1
j )

3. Fix responsibilities, update parameters

πk =
Nk

N

wk =
(
ΦTRkΦ

)−1
ΦTRkt

βk =
Nk∑N

n=1 rnk(tn −wT
k φn)2

where Nk =
∑N

n=1 rnk and Rk = diag(rnk).
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EM Algorithm for Mixutre of Linear Regression Models II

4. Evaluate log-likelihood

ln p(t|X,θ) =
N∑

n=1

ln

(
K∑

k=1

πkNk(tn|y(xn,wk), β
−1
k )

)

and check for convergence of either log-likelihood or
parameters. If not converged, return to step 2.

Nazar Khan Advanced Machine Learning



Mixture of Lin. Regression Mixture of Log. Regression Mixture of Experts

Mixture of logistic regression models I

I For binary classification problems, we studied logistic regression
which outputs posterior probabilities p(t|x) for t = {0, 1}.

I This allows us to use logistic regression as a component of
more complicated probabilistic models.

I A mixture of K logistic regression models can be constructed
as

p(t|φ,θ) =
K∑

k=1

πky
t
k(1− yk)

1−t

where yk = σ(wT
k φ) is the output of component k and the

adjustable parameters are θ = {πk ,wk}.
I Can be extended to multiclass problems as mixture of softmax

models.
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Mixture of logistic regression models II

I Given i.i.d. data {φn, tn}, incomplete data log-likelihood can
be written as

p(t|θ) =
N∏

n=1

K∑
k=1

πky
tn
nk(1− ynk)

1−tn

where ynk = σ(wT
k φn).

I By employing latent variables znk with 1-of-K coding, we can
write the complete data likelihood as

p(t|θ) =
N∏

n=1

K∏
k=1

{πky tnnk(1− ynk)
1−tn}znk

and then use EM for parameter learning.
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Mixture of logistic regression models III

I E-step: Compute responsibilities

rnk = p(znk = 1|tn)

=
p(znk = 1)p(tn|znk = 1)∑K
j=1 p(znj = 1)p(tn|znj = 1)

=
πky

tn
nk(1− ynk)

1−tn∑K
j=1 πjy

tn
nj (1− ynj)1−tn

I Allows us to write the expected complete data log-likelihood

Q(θ,θold) = EZ|t[ln p(t,Z|X,θ)]

=
N∑

n=1

K∑
k=1

rnk{lnπk + tn ln ynk + (1− tn) ln(1− ynk)}
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Mixture of logistic regression models IV

I M-step: Maximise Q(θ,θold) with respect to πk via Lagrange
multipliers to obtain

π∗k =
Nk

N
=

∑N
n=1 rnk
N

I Find optimal classifier weights w∗k via IRLS which requires
computation of the gradient vector

∇wk
Q =

N∑
n=1

rnk(tn − ynk)φn

and the Hessian matrix

∇wk
∇wk
Q = −

N∑
n=1

rnkynk(1− ynk)φnφ
T
n
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Mixture of Experts I

I By allowing the mixing coefficients to depend on the input, we
can obtain an even more powerful class of mixture models.

p(t|x,θ) =
K∑

k=1

πk(x)pk(t|x,θ)

I The input-dependent mixing coefficients πk(x) are known as
gating functions.

I The individual component densities pk(t|x,θ) are known as
the experts.

I Gating functions πk(x) determine which model is how much
of an expert in which region of input space.
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Mixture of Experts II

I One choice of gating functions is the linear softmax

πk(x) =
evTk x∑K
j=1 e

vTj x

I Parameters θ now include the linear softmax weights {vk}.
I If the experts are also linear, learning can be performed using

the EM algorithm.

Nazar Khan Advanced Machine Learning


	Mixture of Lin. Regression
	Mixture of Log. Regression
	Mixture of Experts

