CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Lectures 23 and 24 Mixture Density Networks May 18 and 23, 2016

Forward Problems

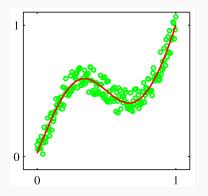


Figure: Successful neural network learning of a uni-modal forward problem $(t_n = x_n + 0.3 \sin(2\pi x_n) + \epsilon)$ using SSE function.

Inverse Problems

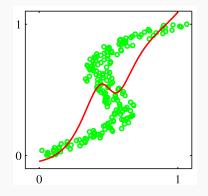


Figure: Unsuccessful neural network learning of a multi-modal inverse problem (roles of t_n and x_n reversed). *Reason for failure*: Training NN with SSE function implies $t \sim N$. However, for multi-modal inverse problems $t \sim N$ and the learned model is a very poor fit of the underlying model.

Mixture Density Networks I

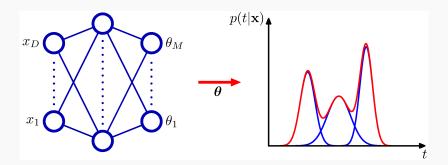


Figure: Mixture density network. Outputs are the mixture parameters $\theta(\mathbf{x})$ corresponding to input **x**. *Difference from earlier approaches*: Instead of learning parameters θ , we learn NN weights **w** that produce parameters $\theta(\mathbf{x})$ that model the density conditioned on input **x**.

Mixture Density Networks II

$$p(\mathbf{t}|\mathbf{x}) = \sum_{k=1}^{K} \pi_k(\mathbf{x}) \mathcal{N}(\mathbf{t}|\boldsymbol{\mu}_k(\mathbf{x}), \sigma_k^2(\mathbf{x})|\mathbf{I})$$

The component densities need not be Gaussian. They can be chosen according to the problem at hand (e.g Bernoulli densities if target t is a binary random variable).

Mixture Density Networks III

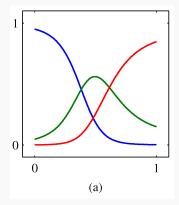


Figure: Mixing coefficients $\pi_k(x)$. At both small and large values of x where p(t|x) is uni-modal, only one mixture component has a larger role. For intermediate values of x where the density is tri-modal, all 3 mixing coefficients have comparable values.

Mixture Density Networks IV

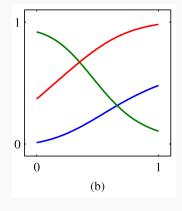


Figure: Means $\mu_k(x)$.

Mixture Density Networks V

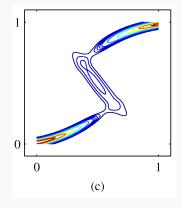


Figure: Contours of p(t|x)

Mixture Density Networks VI

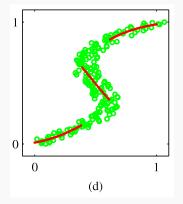


Figure: Approximate modes of conditional density p(t|x).

Project 5 EM for Gaussian Mixture Model

- Density estimation via Gaussian Mixture Model (GMM).
 - Code up a generic implementation of learning a GMM via the EM algorithm in function [mixing_coefs,means,covariance_mats]=learn_gmm(X,K) where X is a D × N data matrix and K is the number of Gaussian components.
 - Regenerate Figure 9.8 in Bishop's book.
- Submit your_roll_number_GMM.zip containing
 - ► code,
 - generated image, and
 - report.txt/pdf explaining your results.
- ► Due Monday, May 30, 2016 before 5:30 pm on \\printsrv.

Project 6 Mixture Density Network

- Multimodal conditional density estimation via Mixture Density Network (MDN).
 - Regenerate Figures 5.19 and 5.21 in Bishop's book.
- Submit your_roll_number_MDN.zip containing
 - ► code,
 - generated images, and
 - report.txt/pdf explaining your results.
- ▶ Due Monday, June 06, 2016 before 5:30 pm on \\printsrv.