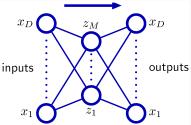
CS-667 Advanced Machine Learning

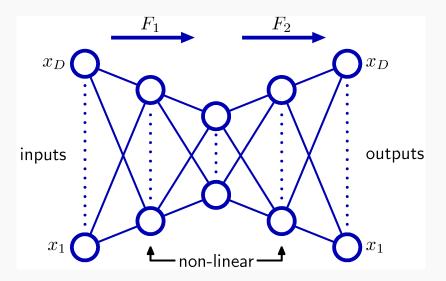

Nazar Khan

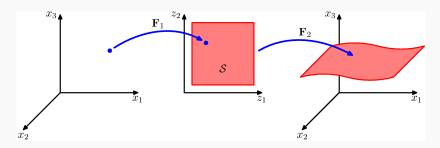
PUCIT

Lectures 25 Autoassociative Neural Networks May 25, 2016

Autoassociative Neural Networks

- ▶ Neural nets learn the mapping from inputs x_n to targets t_n .
- ▶ If target is set to the input vector itself $(t_n = x_n)$, the network learns to associate each input vector with itself.
- This is called an autoassociative mapping and the network is called an autoassociative network.




- Autoassociative nets perform unsupervised learning.
- ► For M < D, hidden layer output $\mathbf{z} \in \mathbb{R}^M$ represents dimensionality reduction.

Two Layer Autoassociative Nets Equivalence with PCA

- ▶ It can be proven that for two layer autoassociative nets, outputs of the M hidden neurons correspond to projection of x onto the M-dimensional subspace spanned by the first M principal components of the data.
- This is true when activation functions of the hidden neurons are linear as well as when they are non-linear.
- Weights of hidden neurons form the basis set that spans the principal subspace.
- However, they need not be orthogonal or mormalised.
- ► There is *no advantage* over standard PCA methods that guarantee
 - correct solution
 - in finite time
 - ordered eigenvalues
 - orthonormal eigenvectors.

Multilayer Autoassociative Nets Nonlinear PCA

