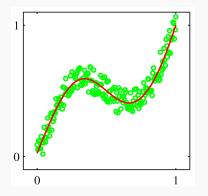
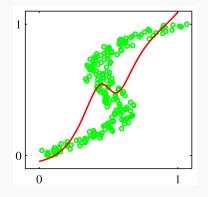
CS-667 Advanced Machine Learning

Nazar Khan


PUCIT

Mixture Density Networks

Forward and Inverse Problems


- ► Goal of supervised learning: model conditional distribution p(t|x).
- ► For simple regression problems p(t|x) is assumed to be Gaussian.
- However, practical machine learning problems can have significantly non-Gaussian distributions.

Forward Problems

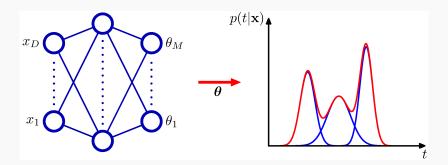
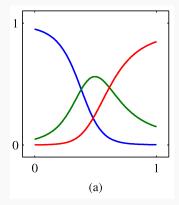
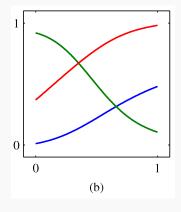


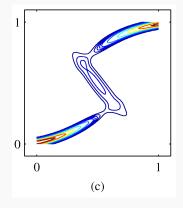
Figure: Successful neural network learning of a *uni-modal* forward problem $(t_n = x_n + 0.3 \sin(2\pi x_n) + \epsilon)$ using SSE function.

Inverse Problems


Figure: Unsuccessful neural network learning of a *multi-modal* inverse problem (roles of t_n and x_n reversed). *Reason for failure*: Training NN with SSE function implies $t \sim \mathcal{N}$. However, for multi-modal inverse problems $t \sim \mathcal{N}$ and the learned model is a very poor fit of the underlying model.


Figure: Mixture density network. Outputs are the mixture parameters $\theta(\mathbf{x})$ corresponding to input **x**. *Difference from earlier approaches*: Instead of learning parameters θ , we learn NN weights **w** that produce parameters $\theta(\mathbf{x})$ that model the density conditioned on input **x**.

$$p(\mathbf{t}|\mathbf{x}) = \sum_{k=1}^{K} \pi_k(\mathbf{x}) \mathcal{N}(\mathbf{t}|\boldsymbol{\mu}_k(\mathbf{x}), \sigma_k^2(\mathbf{x})|\mathbf{I})$$


The component densities need not be Gaussian. They can be chosen according to the problem at hand (e.g Bernoulli densities if target t is a binary random variable).

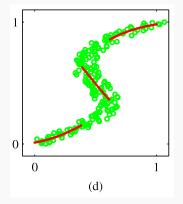

Figure: Mixing coefficients $\pi_k(x)$. At both small and large values of x where p(t|x) is uni-modal, only one mixture component has a larger role. For intermediate values of x where the density is tri-modal, all 3 mixing coefficients have comparable values.

Figure: Means $\mu_k(x)$.

Figure: Contours of p(t|x)

Figure: Approximate modes of conditional density p(t|x).

Assignment 7 EM for Gaussian Mixture Model

- Density estimation via Gaussian Mixture Model (GMM).
 - Code up a generic implementation of learning a GMM via the EM algorithm in function [mixing_coefs,means,covariance_mats]=learn_gmm(X,K) where X is a D × N data matrix and K is the number of Gaussian components.
 - Regenerate Figure 9.8 in Bishop's book.
- Submit your_roll_number_GMM.zip containing
 - ► code,
 - generated image, and
 - report.txt/pdf explaining your results.
- ▶ Due Thursday, May 18, 2017 before 5:30 pm on \\printsrv.