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Assignment 1
Iterative Reweighted Least Squares for Logistic Regression

» Implement the IRLS algorithm for logistic regression.

>

>
>
>

Code up a generic implementation.

Train it on the first 2 classes of MNIST digits training data.
Relevant material has been placed on \\printsrv.

Each sample is a 784 x 1 vector that represents a 28 x 28
image. To visualise the k-th training sample as an image, you
may use the following commands:

imagesc (reshape(train_x(k,:),28,28)7);

axis image;

colormap gray;

Report classification accuracy and confusion matrix on the
testing data for the relevant classes.

» Submit your roll number LR.zip containing code and
report.txt/pdf explaining your results.

> Due next Tuesday (March 07, 2017 before 5:30 pm) on
\\printsrv.
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Assignment 2
SGD for Multiclass Logistic Regression

» Implement the SGD algorithm for multiclass logistic regression.

» Code up a generic implementation.
» Train it on the MNIST digits training data.
» Report classification accuracy and confusion matrix on the
testing data.
» Submit your roll number MLR.zip containing code and
report.txt/pdf explaining your results.

> Due on Tuesday (March 14, 2017 before 5:30 pm) on
\\printsrv.
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Logistic Regression Tips

» In case you are having memory issues or training takes a lot of
time, you might want to use the following tips:
» Type in the command 'doc spdiags’
» Do not use the inv() function to for matrix inverse. Use the
\ operator. For more help, consult Google or Matlab
documentation.

» Also, don't forget to homogenise the inputs by appending a 1
at the end of each input. This will absorb the bias term.

» Lastly, if you start getting a warning message like "Warning:
Matrix is close to singular or badly scaled"
» First look at the difference between Exercises 1.1 and 1.2 from
Chapter 1 and their solutions.
» Then look at the programming solutions to both problems. We
have done both the exercises as well as their programming
solutions in CS 567.
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Project

» Explore an interesting ML problem using a real-world data set.

» 4 deliverables

Proposal Tuesday, March 28 | 1 page

Milestone Tuesday, May 2 3-4 pages

Poster Monday, May 29

Final report | Monday, June 5 6-8 pages (NIPS format)

» Project ideas

» http://cs229.stanford.edu/projects2016.html
http://cs229.stanford.edu/projects2015.html
http://cs229.stanford.edu/projects2014.html
www.cs.cmu.edu/~10701/projects.html
www.kaggle.com

Discuss with me

vV Yy VY VY
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Proposal

» Maximum 1 page description containing

» Project title

» Data set

» Project idea (approximately two paragraphs).

» Software you will need to write or tool/libraries you will need
to learn.

» Papers to read. Include 1-3 relevant papers. You will probably
want to read at least one of them before submitting your

proposal.
» Milestone description. What experimental results will you

complete before May 2nd?

» Proposal will be rejected if you do not have the dataset
available already.
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Milestone

» Short report of 3-4 pages.

» Same sections as the final report (introduction, related work,
method, experiment, conclusion), with a few sections "under
construction".

» Specifically,

» the introduction and related work sections should be in their
final form

» the section on the proposed method should be almost finished

» the sections on the experiments and conclusions will have
whatever results you have obtained, as well as "place-holders"
for the results you plan/hope to obtain.
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Final report

» Must be in NIPS format and page limit. Use this link.
» Think of it as a research paper being submitted to NIPS.
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https://www.sharelatex.com/templates/journals/neural-information-processing-systems-(nips)-conference-2016

Introduction

Neural Networks

» So far, we have learned w* for mapping inputs x € RP to
targets t.

» Often, working in a transformed space ¢ € RM makes it easier
to learn the mapping.

» However, not all mappings are useful for the problem at hand.
Is there an optimal mapping ¢*7

» Neural networks learn the optimal mapping ¢* and also the
optimal parameters w*.
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Introduction

Neural Networks
The Neuron

Bias

T Activate
@ function  Output

X1 O— W1

Inputs  { X2 o wa

I y

X3 o0— W3
Weights

» The function of a biological neuron can be modelled as
yzf(Z,-Werb)-
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Introduction

Neural Networks
The Neuron

» Model the output of the k-th neuron as
yk = f(ak) = f(wka) =i (ZJ ijxj> where
» The x; constitute values of input signals feeding into the
neuron.
» The w; are weights determining the importance given to input
Xj by this neuron.
» Dot-product ax = >, wy;x; is called the activation.

» f(-) is called the activation function. Determines behaviour of
the neuron in response to its activation.

» The perceptron that we studied earlier is a very simple neuron
model with f being the step function.

1 ifa>0
f(a) = - 1
(2) 0 ifa<O (1)
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Introduction

Neural Networks

» The linear models that we covered can be represented as

M
V(W) = F(w] d(x)) = F | Y wigj(x)

Jj=0

where yy is the k-th output and index j starts from 0 to reflect
bias inclusion.

identity for regression
f = < logistic sigmoid for binary classification
softmax for multiclass classification

» Each ¢j(x) can be seen as a basis function.

» So far, the basis functions were fixed. Now we adapt them to
the problem.
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Introduction

Neural Networks

» Model ¢;(x) as a non-linear function h(a;) where activation

aj = ijx with adjustable parameters w;.

» So the k-th output can be written as

M
V(W) = f(ar) = F(w] p(x)) = £ [ D wigej(x)

j=0

M
=f Y wiih(a))
j=0

M D
f Z ijh (Z WJ','X,'>
j=1 i=0
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Introduction

Neural Networks

Input Hidden Output
layer layer layer

/

Input #1 —

® @ o

These computations can be visualised graphically as forward
propagation of information through the so-called neural network.

Input #2 —
Input #3 —

Input #4 —
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Introduction

Neural Networks

hidden units

> 3 neuron types:

> input x;
o > hidden z;
outputs > OUtpUt _yk
! > 2 weight layers:
» hidden-input wj(,l)
» output-hidden W,E-Q)
A two-layer neural » To differentiate between different
network. layer parameters, we can write

M D
yk(x, W) = f Z ngf)h Z Wj(il)X,'
j=1 i=0
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Introduction

Neural Networks
As Multilayer Perceptrons

v

The computation yx(x,W) = f (Zjl\il W,Ef)h (Z,P:o Wj(l-l)X,')>
can be viewed in two stages:

1. Compute z; = h(ijx), followed by

2.y = f(w/2).
Both stages resemble the perceptron model.
Therefore, another name for such neural networks is multilayer
perceptrons or simply MLP.
However, there is a key difference:

» Perceptron uses a non-differentiable step-function non-linearity.
» MLP uses a differentiable sigmoidal non-linearity. So we can
train via gradient based approaches.

Therefore, despite the name, MLPs never use perceptrons!
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Introduction

Neural Networks
As Universal Approximators

» Neural networks are considered to be universal approximators.
» A two-layer network with linear outputs can uniformly
approximate any continuous function on a compact input
domain to arbitrary accuracy.
» Provided that the network has a sufficiently large number of
hidden units.
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NNs for Regression

Neural Networks for Regression
Univariate

» In the polynomial fitting example from Chapter 1, given inputs
and targets {x,, t,}, we wanted to find the optimal parameters
w™ of the polynomial that best fits the data.

» Assuming i.i.d data and t, ~ N(y(xn,w), 371), we wrote the
likelihood function whose maximisation corresponded to
minimisation of the SSE function

N

E(w) = 5 (v(xn W) — t)?

n=1

» By replacing the polynomial in function y(x,,w) by the neural
network function, we can minimise E(w) to find optimal
parameters w* of the neural network.
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NNs for Regression

Neural Networks for Regression
Multivariate

» Similarly, for multivariate targets, assuming multivariate
Gaussian density leads to the SSE function

ZHY Xn, W) — to]|*

where y, = ax = w/ x.
» Notice and prove that
OE,
2 L — (ykn - tkn)
dg N———

errorp
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NNs for Classification

Neural Networks for Classification
Binary

» Similarly, for binary classification, we can assume a Bernoulli
distribution on targets which leads to minimisation of the
cross-entropy function

N

E(w) ==Y (talny(xn,w) + (1 = tn) In(1 = y (x5, w)))

n=1
where y(x,,w) = P(C1|x,) = o(a) = o(w'x,).
> Notice (and prove) that

0E,
Oa

= (yn - tn)
——

errorp
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NNs for Classification

Neural Networks for Classification
Multiclass

» For multiclass classification, we can minimise the multiclass
cross-entropy function

N K

=D (tkn In (i, w))

n=1 k=1

where yi(xp, w) = P(Ck|xn) = % and ax = w/ x.
» Notice (and prove) that

OE,
2 == (Ykn - tkn)

dy ——

error,

» In the following we will denote the error gE as d.
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NNs for Classification

Neural Networks for Classification

» Note that we can learn classifiers via SSE minimisation also,
but the cross-entropy formulations
1. can be derived probabilistically,
2. train faster, and
3. generalise better.
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Optimisation

Optimisation

v

For optimisation, we notice that w* must be a stationary point
of E(w).
» Minimum, maximum, or saddle point.
» A saddle point is where gradient vanishes but point is not an
extremum (Example).
The goal in neural network minimisation is to find a local
minimum.

A global minimum, even if found, cannot be verified as
globally minimum.

Due to symmetry, there are multiple equivalent local minima.
Reaching any suitable local minimum is the goal of neural
network optimisation.

Since there are no analytical solutions for w*, we use iterative,
numerical procedures.
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http://mathcatalog.tumblr.com/post/77619843777/studygeek-without-mathematics-you-wouldnt-have

Optimisation

Optimisation

» Options for iterative optimisation
» Online methods
> Stochastic gradient descent
> Stochastic gradient descent using mini-batches
» Batch methods
» Batch gradient descent
> Conjugate gradient descent
> Quasi-Newton methods
» Online methods
» converge faster since parameter updates are more frequent, and
» have greater chance of escaping local minima because
stationary point w.r.t to whole data set will generally not be a
stationary point w.r.t an individual data point.
» Batch methods: Conjugate gradient descent and quasi-Newton
methods
» are more robust and faster than batch gradient descent, and
» decrease the error function at each iteration until arriving at a
minimum.
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Backpropagation

Backpropagation

» For all gradient based methods, however, we must first
compute the gradient V,, E(w).

» We have seen that many error functions of practical interest
can be written as a sum of terms

N
E(w) = En(w)
n=1

> So the essential gradient is Vy E,(w) which we write in its
complete form Vw E(y(xn, w)).
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Backpropagation

Multivariate Chain Rule

» The chain rule of differentiation states

df(u(x)) _ df du
dx  dudx

» The multivariate chain rule of differentiation states

dr(u(x).v(x) _ Of du OF dv
dx  Judx Ovdx

» Backpropagation is just an application of the multivariate
chain rule.
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Backpropagation

Backpropagation

» For the output layer weights

OE(yk(ak(wyi))) _ OE dax
aij Oay 8ij B

» For the hidden layer weights, using the multivariate chain rule

aiﬁ E(yi(ai(z(aj(w;i)))-y2(a2(z(aj(w;i))): - - - ya(an(zi(a;(w;i))))

_ OE da; OE Oay 0z 0a; 5
N Baj aWJ, N aak 821 8aJ 8WJ, -
D - %

Ok wig h(a) Xi

Y
» For each layer, notice the familiar form

gradient = error X input
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Backpropagation

Backpropagation

» |t is important to note that

K
0; = h'(a)) D Skwij
k=1

yields the error §; at hidden neuron j by backpropagating the
errors d from all output neurons that use the output of
neuron j.

> More generally, compute error §; at a layer by backpropagating
the errors 0, from next layer.

» Hence the names error backpropagation, backpropagation, or
simply backprop.

» Very useful machine learning technique that is
not limited to neural networks.
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Backpropagation

Backpropagation

Figure: Visual representation of backpropagation of delta values of layer
[+ 1 to compute delta values of layer /.
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Backpropagation

Backpropagation
Learning Algorithm

1. Forward propagate the input vector x, to compute activations
and outputs of every neuron in every layer.

2. Evaluate J; for every neuron in output layer.

3. Evaluate §; for every neuron in every hidden layer via
backpropagation.

4. Compute derivative of each weight 3—5 via d xinput.

5. Update each weight via gradient descent w7 ! = w™ — ”gTEV-
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Backpropagation

Background Math
A (—1,1) sigmoidal function

Since range of logistic sigmoid o(a) is (0, 1), we can obtain a
function with (—1,1) range as 20(a) — 1.

Another related function with (—1, 1) range is the tanh
function.

e? —e?

tanh(a) = 20'(23) —1= m

where o is applied on 2a.

Preferred over logistic sigmoid as activation function h(a) of
hidden neurons. (Read Yann LeCun's "Efficient Backprop"
paper to understand why.)

Just like the logistic sigmoid, derivative of tanh(a) is simple:
1 — tanh?(a). (Prove it.)
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Backpropagation

Backpropagation
A Simple Example

» Two-layer MLP for multivariate regression from RP? — RK.
» Linear outputs yx = ax with SSE E, = %ZkK:I(Yk — t)2.
» M hidden neurons with tanh(-) activation functions.

Forward propagation Backpropagate

K
Z i 0 =(1—20) > wio
k=1

7 = tanh(aj)

M
Yk = Z w)
j=0

Ok = Yk — tk
8E( = djx; and =5 = 0y z;.
8le. 8ij
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Backpropagation

Backpropagation
Verifying Correctness

» Numerical derivatives can be computed via finite central
differences

OE, _ En(wji +€) — En(wji —¢€) 2
= + O(¢€9)
8Wj,‘ 2¢

» Analytical derivatives computed via backpropagation must be
compared with numerical derivatives for a few examples to
verify correctness.

» Any implementation of analytical derivatives (not just
backpropagation) must be compared with numerical
derivatives.

» Notice that we could have avoided backpropagation and
computed all required derivatives numerically.

> But cost of numerical differentiation is O(W?2) while that of
backpropagation is O(W) where W is the total number of
weights (and biases) in the network. (Why?)
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Backpropagation

Assignment 3
Backpropagation for MLPs

» Implement the backpropagation algorithm for training an MLP.

v

Code up a generic implementation.

Verify correctness of analytical derivatives.

Understand the experiment and network used for Figure 5.3 in
Bishop's book.

» Regenerate Figure 5.3 using your implementation.

v

v

» Submit your roll number MLP.zip containing

» code,
» generated image, and
> report.txt/pdf explaining your results.

» Due Tuesday (March 21, 2017 before 5:30 pm) on \\printsrv.
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Backpropagation

Neural Network Tips

» Modularity (fprop(), bprop(), check gradients(),
update weights(),...).

» Use a global structure net.x, net.w{1}, net.w{2}, net.a{1},
net.y{1}, net.y{2}, ..., net=net.fprop(net),
net=net.bprop(net), ...

»a=WTx.
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Regularization

Regularization in Neural Networks

» Recall that over-fitting can be lessened via regularization.
1. Penalise magnitudes of weights: E(w) = E(w) + Jwlw
2. Separately penalise magnitudes of weights of each layer:
E(w) = E(w) + 21, 3w w0,
3. Early stopping by checkmg E(w) on a validation set. Stop
when error on validation set starts increasigg.
Yy

4. Tangent propagation: E(w) = E(w) + Px
X

rough idea

(&,

. Training with transformed data.
6. Building invariance into the network structure. We cover this
in the next lecture on Convolutional Neural Networks.
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