CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Autoassociative Neural Networks (Autoencoders)

Autoassociative Neural Networks

- ▶ Neural nets learn the mapping from inputs x_n to targets t_n .
- ▶ If target is set to the input vector itself $(t_n = x_n)$, the network learns to associate each input vector with itself.
- ▶ This is called an *autoassociative mapping* and the network is called an *autoassociative network*.

Autoassociative nets perform unsupervised learning.

Autoassociative Neural Networks

- ▶ For M < D, hidden layer output $\mathbf{z} \in \mathbb{R}^M$ represents dimensionality reduction.
- Also called autoencoders.
- Serve as building blocks of deep learning. They enable deep architectures to be trained *properly*.

Autoencoders and Deep Learning

- ▶ Before deep learning, architectures with many layers suffered from the *vanishing gradient problem*.
- Gradients backpropagated to early layers had very small magnitudes.
- So the learning effectively took place in the later layers only.
- This meant that the architecture was effectively reduced from deep to shallow.
- Deep learning uses autoencoders to pre-train the weights of the early layers in an unsupervised fashion.
- When these weights are initial weights, standard backpropagation successfully trains all layers.

Two Layer Autoassociative Nets Equivalence with PCA

- ▶ It can be proven that for two layer autoassociative nets, outputs of the M hidden neurons correspond to projection of x onto the M-dimensional subspace spanned by the first M principal components of the data.
- This is true when activation functions of the hidden neurons are linear as well as when they are non-linear.
- Weights of hidden neurons form the basis set that spans the principal subspace.
- ▶ However, they need not be orthogonal or normalized.
- ▶ There is *no advantage* over standard PCA methods that guarantee
 - correct solution
 - in finite time
 - ordered eigenvalues
 - orthonormal eigenvectors.

Autoassociative Nets Visualization of weights

From http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

The hidden neurons learned to detect edges of different orientations at different positions. Simple biological neurons (V1 layer) also respond to such edge-like inputs.

Multilayer Autoassociative Nets Nonlinear PCA

