CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

Gaussian Mixture Models

Announcement

- The CNN assignment carries twice the weightage of other assignments.
- It will not be dropped.
- ▶ Your current submissions receive close to zero marks.
- You have till the end of this month.

Gaussian Mixture Models

- We have already seen that multi-modal densities cannot be modelled via a uni-modal Gaussian.
- They can be modelled via mixtures of Gaussians which are simply linear superpositions of uni-modal Gaussians

$$p(\mathsf{x}) = \sum_{k=1}^{N} \pi_k \mathcal{N}(\mathsf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where the mixing coefficients π_k satisfy

$$0 \le \pi_k \le 1$$
$$\sum_{k=1}^K \pi_k = 1$$

We will now derive the mixture density p(x) using latent variables.

Gaussian Mixture Models Latent Variable View

- ► Similar to the K-means approach, let us append our observed variable x with a latent variable z using 1-of-K coding.
- Using elementary probability

$$p(x) = \sum_{z} p(x, z) = \sum_{z} p(z)p(x|z)$$

However, this time we use probabilities (soft assignment)

$$p(z_k=1)=\pi_k$$

▶ Due to the 1-of-K representation

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{\mathbf{z}_k}$$

and conditional probability

$$p(\mathbf{x}|\mathbf{z}) = p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Gaussian Mixture Models Latent Variable View

 Therefore, the latent variable view also yields the Gaussian Mixture Model (GMM)

$$p(\mathsf{x}) = \sum_{\mathsf{z}} p(\mathsf{x}, \mathsf{z}) = \sum_{\mathsf{z}} p(\mathsf{z}) p(\mathsf{x}|\mathsf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathsf{x}|\mu_k, \Sigma_k)$$

- More importantly, complicated/multi-modal p(x) has been modelled using simple/uni-modal p(x|z).
- This powerful idea extends beyond Gaussian mixtures.
 - ▶ Mixtures of insert your favourite distribution.
 - Mixtures of linear regression.
 - Mixtures of logistic regression.

Gaussian Mixture Models Responsibilities

- \triangleright p(x) is the *marginal density* that we are looking to model.
- ▶ $p(x|z_k = 1)$ is the *component conditional density*. That is, probability density of x according to component k.
- ▶ $p(z_k = 1)$ is the *prior probability* of component k.
- ▶ $p(z_k = 1|x)$ is the *posterior probability* of component k.
 - ► Can be viewed as the *responsibility* that component *k* takes for explaining observation **x**.
 - Can be computed via Bayes' theorem

$$p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• We will denote responsibility by $r_k = p(z_k = 1 | \mathbf{x})$.

Gaussian Mixture Models Parameter Estimation

- ► The latent variable view of GMMs suggests iterative, alternating optimisation.
- ▶ Given i.i.d. data $\{x_1, \ldots, x_N\}$ and an integer K > 1, find mixing coefficients $\{\pi_k\}$ and Gaussian parameters $\{\mu_k\}$ and $\{\Sigma_k\}$.
- ▶ Likelihood is given by $\prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$.
- ▶ Log-likelihood is given by $\sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$.
 - Notice that the summation in the mixture model prevents the natural logarithm from cancelling out the Gaussian exponential. So, no closed form solution.
 - ▶ Solution 1: Gradient ascent.
 - ► Solution 2: Alternating optimisation.

Gaussian Mixture Models Estimation of μ_k

Using maximum likelihood

$$\mathbf{0} \equiv \frac{\partial \ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_{k}}$$

$$\Longrightarrow \mathbf{0} = -\sum_{n=1}^{N} \underbrace{\frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}}_{r_{nk}} \boldsymbol{\Sigma}_{k}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k})$$

$$\Longrightarrow \boldsymbol{\mu}_{k} = \underbrace{\frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_{n}}{\sum_{n=1}^{N} r_{nk}}}_{N_{nk}} = \underbrace{\frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_{n}}{N_{k}}}_{N_{k}}$$

Notice the similarity with K-means. The only difference here is that the hard assignments have been replaced by soft responsibilities.

Gaussian Mixture Models Estimation of Σ_{ν}

Similarly

$$0 \equiv \frac{\partial \ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\Sigma}_k}$$

$$\Longrightarrow \boldsymbol{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T$$

▶ This is similar to the result for fitting a single Gaussian but now each data point is weighted by the responsibility r_{nk} .

Gaussian Mixture Models Estimation of π_ν

- Maximisation with respect to π_k is a constrained maximisation since π_k correspond to probability values.
- So we maximise the Lagrangian

$$L(\mathsf{X}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \lambda) = \ln p(\mathsf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \lambda \left(\sum_{k=1}^K \pi_k - 1\right)$$

by setting the gradient to 0

$$0 \equiv \frac{\partial L(\mathbf{X}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \pi_k}$$

$$\implies 0 = \sum_{n=1}^{N} \frac{\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^{K} \pi_i \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)} + \lambda$$

- ▶ Multiplying both sides by π_k and then summing both sides over k yields $\lambda = -N$.
- Substituting $\lambda = -N$ and rearranging yields

$$\pi_k = \frac{N_k}{N}$$

▶ In words, mixing coefficient for component *k* is given by the average responsibility that it takes for explaining the training data points.

Gaussian Mixture Models Parameter Estimation

- Notice that solutions for μ_k , Σ_k and π_k are dependent on the responsibilities r_{nk} .
- ▶ However, the responsibilities depend on μ_k , Σ_k and π_k .
- We can now present the alternating optimisation algorithm for GMMs.

Alternating Optimisation for GMMs

Data: Data points $\{x_1, \ldots, x_N\}$, integer K > 1.

Result: Component parameters $\{\mu_k, \Sigma_k\}$, mixing coefficients $\{\pi_k\}$

- **1.** Choose some initial values for μ_k, Σ_k, π_k
- 2. Fix parameters, update responsibilities $r_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$
- 3. Fix responsibilities, update parameters

$$\mu_k^{\text{new}} = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{N_k} \text{ where } N_k = \sum_{n=1}^{N} r_{nk}$$

$$\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^T$$

$$\pi_k^{\text{new}} = \frac{N_k}{N}$$

Alternating Optimisation for GMMs

4. Evaluate log-likelihood

$$\ln p(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{n=1}^N \ln \left(\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \right)$$

and check for convergence of either log-likelihood or parameters. If not converged, return to step 2.

Alternating Optimisation for GMMs

- Each iteration increases (or retains) the value of the log-likelihood.
- ► Therefore, convergence to (local) maximum is guaranteed.
- ► This algorithm has a name Expectation Maximisation (EM).
 - ▶ We will cover it in detail in next lecture.
- Converges slower than K-means and performs more computations per-iteration.
- Usually a good idea to initialise EM by the result of K-means.
 - ▶ Set μ_k to the k-th K-means cluster center.
 - ▶ Set Σ_k to the data covariance matrices for k-th K-means cluster.
 - Set π_k to the fraction of points assigned by K-means to cluster k.

Alternating Optimisation for GMMs Singularity Avoidance

- Log-likelihood equals infinity if any Gaussian component 'collapses' to a training data point. (Why?)
- ► This represents a pathological condition or *singularity*.
- Care must be taken to check if that has happened or is close to happening.
- If so, the collapsing component should be reset to some other randomly chosen μ_k and large Σ_k and the optimisation should proceed as before.

Assignment 7 *FM for Gaussian Mixture Model*

- Density estimation via Gaussian Mixture Model (GMM).
 - Code up a generic implementation of learning a GMM via the EM algorithm in function [mixing_coefs,means,covariance_mats]=learn_gmm(X,K) where X is a D × N data matrix and K is the number of Gaussian components.
 - ▶ Regenerate Figure 9.8 in Bishop's book.
- Submit your_roll_number_GMM.zip containing
 - code,
 - generated image, and
 - report.txt/pdf explaining your results.
- ▶ Due Thursday, May 18, 2017 before 5:30 pm on \\printsrv.