CS-667 Advanced Machine Learning

Nazar Khan

PUCIT

The EM Algorithm

The EM Algorithm

- We have seen that K-means and GMMs are examples of latent variable models.
- Specifically for GMMs, we have seen an incremental algorithm for learning the parameters via ML.
- ► That algorithm is actually an instance of a powerful framework called *Expectation-Maximisation (EM)*.
- ► EM is used for solving latent variable problems via ML.
- We will now present a more general explanation of the EM algorithm.

- Maximum likelihood is equivalent to maximising the log-likelihood In $p(X|\theta)$.
- Using the sum-rule

$$\ln p(X|\theta) = \ln \left(\sum_{Z} p(X, Z|\theta) \right)$$

- Maximisation is no longer straight-forward since In is 'blocked'by the summation.
- So we take another approach.

- ▶ We will denote {X, Z} as the *complete* dataset.
- ▶ We will denote {X} as the *incomplete* dataset.
- ▶ The goal now is to maximise the complete-data log-likelihood function $p(X, Z|\theta)$.
- ▶ But for that we need to know the values of **Z** which are unobserved. What *can* be computed about **Z**, however, is the posterior $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$.
- So instead of the *uncomputable*, *actual value* of log-likelihood, the *next best computable number* would be its *expected-value* under the posterior $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$.

▶ This yields the *E-step* of the EM algorithm.

$$\mathbb{E}_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\mathsf{old}}}[\ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})] = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\mathsf{old}}) \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$$

- Since we are eventually interested in optimal parameters θ^* we treat this expectation as a function of θ and denote it by $\mathcal{Q}(\theta, \theta^{\text{old}})$.
- ► The *M-step* corresponds to maximising this expectation

$$oldsymbol{ heta}^{\mathsf{new}} = rg \max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{\mathsf{old}})$$

- In short, EM replaces the log-likelihood by the expected log-likelihood and maximises it.
- ► Each EM cycle either moves toward or stays at a local maximum of $\ln p(\mathbf{X}|\boldsymbol{\theta})$.

The General EM Algorithm

Goal is to maximise likelihood $p(\mathbf{X}|\boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$ by introducing joint distribution $p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ involving latent variables \mathbf{Z} .

- 1. Choose initial θ^{old}
- 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
- 3. M-step: Obtain new estimate θ^{new} by maximising the expectation $\mathcal{Q}(\theta, \theta^{\text{old}})$

$$oldsymbol{ heta}^{\mathsf{new}} = rg \max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{\mathsf{old}})$$

where $Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\theta)$.

4. Check for convergence of either log-likelihood or parameters. If not converged, then

$$\theta^{\mathsf{old}} \leftarrow \theta^{\mathsf{new}}$$
 (1)

and return to step 2.

Extensions of EM

▶ EM for MAP estimation via prior $p(\theta)$ amounts to modifying the M-step only.

$$oldsymbol{ heta}^{\mathsf{new}} = rg \max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{\mathsf{old}}) + \ln p(oldsymbol{ heta})$$

For problems with a 'difficult/intractable' M-step, maximisation can be replaced by a step that just increases $\mathcal{Q}(\theta, \theta^{\text{old}})$. This is known as the *Generalised EM* algorithm.

- Notice that $p(X|\theta) = p(X|\theta) \frac{p(Z|X,\theta)}{p(Z|X,\theta)} = \frac{p(X,Z|\theta)}{p(Z|X,\theta)}$.
- ▶ Recall that $\sum_{\mathbf{x}} q(\mathbf{x}) = 1$ for any distribution q over any random variable \mathbf{x} .
- Also recall that Kullback-Leibler divergence between probability distributions p and q is computed as

$$KL(p||q) = -\sum_{\mathbf{x}} p(\mathbf{x}) \ln \frac{q(\mathbf{x})}{p(\mathbf{x})}$$

which is non-symmetric

$$\mathit{KL}(q||p) = -\sum_{\mathbf{x}} q(\mathbf{x}) \ln \frac{p(\mathbf{x})}{q(\mathbf{x})}$$

and always non-negative.

This allows us to write the incomplete data log-likelihood as

$$\ln p(X|\theta) = \ln p(X|\theta) \sum_{Z} q(Z)$$

$$= \sum_{Z} \ln p(X|\theta) q(Z) = \sum_{Z} \ln \frac{p(X,Z|\theta)}{p(Z|X,\theta)} q(Z)$$

$$= \sum_{Z} q(Z) \ln p(X,Z|\theta) - q(Z) \ln p(Z|X,\theta)$$

$$= \sum_{Z} q(Z) \ln p(X,Z|\theta) - q(Z) \ln q(Z) - q(Z) \ln p(Z|X,\theta) + q(Z) \ln q(Z)$$

$$= \sum_{Z} q(Z) \ln \frac{p(X,Z|\theta)}{q(Z)} - \sum_{Z} q(Z) \ln \frac{p(Z|X,\theta)}{q(Z)}$$

 $KL(q||p)\geq 0$

 $\mathcal{L}(q,\theta)$

- ▶ First term is a function of θ and a functional of q.
- Second term is the KL-divergence between q(Z) and posterior $p(Z|X,\theta)$.
- ▶ Since KL(q||p) is always ≥ 0

$$\ln p(X|\theta) = \mathcal{L}(q,\theta) + KL(q||p)$$

$$\implies \mathcal{L}(q,\theta) \le \ln p(X|\theta)$$
(2)

- ▶ Therefore $\mathcal{L}(q, \theta)$ is a lower bound on the value of the incomplete data log-likelihood ln $p(X|\theta)$.
- ▶ If we choose q or θ that increase the value of $\mathcal{L}(q, \theta)$, then the value of $\ln p(X|\theta)$ will also increase.

- **E**-step: Maximize $\mathcal{L}(q, \theta)$ with respect to q.
 - ▶ Since $\mathcal{L}(q, \theta)$ cannot exceed $\ln p(X|\theta)$, it's maximum value is $\ln p(X|\theta)$.
 - ▶ This occurs when KL(q||p) = 0.
 - ▶ This occurs when $q(Z) = p(Z|X, \theta)$. So that is q^* .
- ▶ *M-step:* Maximize $\mathcal{L}(q, \theta)$ with respect to θ .
- Since both the E-step and the M-step either increase or retain the lower-bound $\mathcal{L}(q,\theta)$, they either increase or retain the log-likelihood $\ln p(X|\theta)$ as well.
- ▶ Furthermore, since $KL(q||p) \ge 0$, Equation 2 implies that $\ln p(X|\theta)$ increases even more than the increase in the lower-bound.
- ► Since each EM iteration either increases or retains the complete data log-likelihood, the algorithm is guaranteed to converge to a local maximum.