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EM Extensions Proof of Convergence

The EM Algorithm

I We have seen that K-means and GMMs are examples of latent
variable models.

I Specifically for GMMs, we have seen an incremental algorithm
for learning the parameters via ML.

I That algorithm is actually an instance of a powerful framework
called Expectation-Maximisation (EM).

I EM is used for solving latent variable problems via ML.
I We will now present a more general explanation of the EM

algorithm.
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I Maximum likelihood is equivalent to maximising the
log-likelihood ln p(X|θ).

I Using the sum-rule

ln p(X|θ) = ln

(∑
Z

p(X,Z|θ)

)

I Maximisation is no longer straight-forward since ln is
‘blocked’by the summation.

I So we take another approach.
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I We will denote {X,Z} as the complete dataset.
I We will denote {X} as the incomplete dataset.
I The goal now is to maximise the complete-data log-likelihood

function p(X,Z|θ).
I But for that we need to know the values of Z which are

unobserved. What can be computed about Z, however, is the
posterior p(Z|X,θ).

I So instead of the uncomputable, actual value of log-likelihood,
the next best computable number would be its expected-value
under the posterior p(Z|X,θ).
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I This yields the E-step of the EM algorithm.

EZ|X,θold [ln p(X,Z|θ)] =
∑
Z

p(Z|X,θold) ln p(X,Z|θ)

I Since we are eventually interested in optimal parameters θ∗ we
treat this expectation as a function of θ and denote it by
Q(θ,θold).

I The M-step corresponds to maximising this expectation

θnew = argmax
θ
Q(θ,θold)

I In short, EM replaces the log-likelihood by the expected
log-likelihood and maximises it.

I Each EM cycle either moves toward or stays at a local
maximum of ln p(X|θ).
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The General EM Algorithm

Goal is to maximise likelihood p(X|θ) with respect to θ by
introducing joint distribution p(X,Z|θ) involving latent variables Z.

1. Choose initial θold

2. E-step: Evaluate p(Z|X,θold)

3. M-step: Obtain new estimate θnew by maximising the
expectation Q(θ,θold)

θnew = argmax
θ
Q(θ,θold)

where Q(θ,θold) =
∑

Z p(Z|X,θold) ln p(X,Z|θ).
4. Check for convergence of either log-likelihood or parameters. If

not converged, then

θold ← θnew (1)

and return to step 2.
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Extensions of EM

I EM for MAP estimation via prior p(θ) amounts to modifying
the M-step only.

θnew = argmax
θ
Q(θ,θold) + ln p(θ)

I For problems with a ‘difficult/intractable’ M-step,
maximisation can be replaced by a step that just increases
Q(θ,θold). This is known as the Generalised EM algorithm.
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Proof of Convergence of EM

I Notice that p(X |θ) = p(X |θ)p(Z |X ,θ)p(Z |X ,θ) =
p(X ,Z |θ)
p(Z |X ,θ) .

I Recall that
∑

x q(x) = 1 for any distribution q over any
random variable x.

I Also recall that Kullback-Leibler divergence between
probability distributions p and q is computed as

KL(p||q) = −
∑
x

p(x) ln
q(x)
p(x)

which is non-symmetric

KL(q||p) = −
∑
x

q(x) ln
p(x)
q(x)

and always non-negative.
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Proof of Convergence of EM

This allows us to write the incomplete data log-likelihood as

ln p(X |θ) = ln p(X |θ)
∑
Z

q(Z )︸ ︷︷ ︸
1

=
∑
Z

ln p(X |θ)q(Z ) =
∑
Z

ln
p(X ,Z |θ)
p(Z |X , θ)

q(Z )

=
∑
Z

q(Z ) ln p(X ,Z |θ)− q(Z ) ln p(Z |X , θ)

=
∑
Z

q(Z ) ln p(X ,Z |θ)−q(Z ) ln q(Z )− q(Z ) ln p(Z |X , θ)+q(Z ) ln q(Z )

=
∑
Z

q(Z ) ln
p(X ,Z |θ)

q(Z )︸ ︷︷ ︸
L(q,θ)

−
∑
Z

q(Z ) ln
p(Z |X , θ)

q(Z )︸ ︷︷ ︸
KL(q||p)≥0
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Proof of Convergence of EM

I First term is a function of θ and a functional of q.
I Second term is the KL-divergence between q(Z ) and posterior

p(Z |X , θ).
I Since KL(q||p) is always ≥ 0

ln p(X |θ) = L(q, θ) + KL(q||p) (2)
=⇒ L(q, θ) ≤ ln p(X |θ)

I Therefore L(q, θ) is a lower bound on the value of the
incomplete data log-likelihood ln p(X |θ).

I If we choose q or θ that increase the value of L(q, θ), then the
value of ln p(X |θ) will also increase.
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Proof of Convergence of EM

I E-step: Maximize L(q, θ) with respect to q.
I Since L(q, θ) cannot exceed ln p(X |θ), it’s maximum value is

ln p(X |θ).
I This occurs when KL(q||p) = 0.
I This occurs when q(Z ) = p(Z |X , θ). So that is q∗.

I M-step: Maximize L(q, θ) with respect to θ.
I Since both the E-step and the M-step either increase or retain

the lower-bound L(q, θ), they either increase or retain the
log-likelihood ln p(X |θ) as well.

I Furthermore, since KL(q||p) ≥ 0, Equation 2 implies that
ln p(X |θ) increases even more than the increase in the
lower-bound.

I Since each EM iteration either increases or retains the
complete data log-likelihood, the algorithm is guaranteed to
converge to a local maximum.
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